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Figure 1: Given the tetrahedral mesBYLINDER as input in (a), the frame- eld in (b) induces the singularity graph in (c). Note that having

four valence-three singularities pass through the cylinder is a common way of parametrizing a cylindrical mesh. Unfortunately, the two left
singularity curves meet at a common vertex (marked by a circle) in the middle of the cylinder, forcing both edge strips onto the same integer
line in parametric space. This causes the parameter image of the many tetrahedra shown in (d) to degenerate (blue) or ip (red). While
these imperfections of the parametrization are a dif cult problem for naive mesh extraction algorithms, our algorithm is able to extract the
sensible all-hexahedral mesh in (e). The singularity graph in (f) shows that the two singular valence-three curves were merged into a single
valence-two curve.

Abstract 1 Introduction

State-of-the-art hex meshing algorithms consist of three steps: High-quality meshes are of great interest for various kinds of sim-
Frame- eld design, parametrization generation, and mesh extrac- ulations. Finite element methods, for example, solve complicated
tion. However, while the rst two steps are usually discussed in problems such as partial differential equations (PDE) by discretiz-
detail, the last step is often not well studied. In this paper, we fully ing a volume into a mesh consisting of many small cells. Since they
concentrate on reliable mesh extraction. are easy to generate, these cells are often tetrahedra. Hexahedral

meshes, however, are better suited for these tasks since they typ-

Parametrization methods employ computationally expensive coun-

termeasures to avoid mapping input tetrahedra to degenerate

or ipped tetrahedra in the parameter domain because such a
parametrization does not de ne a proper hexahedral mesh. Nev-

ertheless, there is no known technique that can guarantee the com

plete absence of such artifacts.

We tackle this problem from the other side by developing a mesh
extraction algorithm which is extremely robust against typical im-

perfections in the parametrization. First, a sanitization process
cleans up numerical inconsistencies of the parameter values cause
by limited precision solvers and oating-point number representa-

tion. On the sanitized parametrization, we extract vertices and so-
called darts based on intersections of the integer grid with the para-
metric image of the tetrahedral mesh. The darts are reliably inter-
connected by tracing within the parametrization and thus de ne the

d

ically require only 10-25% the number of elements of tetrahedral
meshes to achieve the same accuracy [Shepherd and Johnson 2008].
They are suitable for a multilevel hierarchy of nested meshes which
can enhance the speed and accuracy of PDE solvers signi cantly
[Nieser et al. 2011].

Unfortunately, the generation of these meshes takes up a lot of time.
Shimada [2006] reports that only 20% of the total time spent on
modeling and simulation techniques is used for analysis, while set-
ng up the problem takes up 80%. While the generation of tetra-
edral meshes may only take hours or days, designing a hexahedral
mesh can take several months [Shepherd and Johnson 2008] be-
cause they are often still constructed by hand to ensure the correct
alignment to the current problem.

Recent developments, e.g. by Nieser et al. [2011] or Li et al.

topology of the hexahedral mesh. In a postprocessing step, we let[2012], prove parametrization-based hex meshing algorithms to be
certain pairs of darts cancel each other, counteracting the effect ofa promising approach for automated hex mesh generation from
ipped regions of the parametrization. With this strategy, our algo- given tetrahedral meshes. The general structure of these techniques

rithm is able to robustly extract hexahedral meshes from imperfect
parametrizations which previously would have been considered de-
fective. The algorithm will be published as an open source library

[Lyon et al. 2016].
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2. Generation of @arametrizatiorwhich aligns to that eld the triangular input mesh. Like our algorithm, QEx applies a san-
itization step to get rid of numerical errors in the parametrization,
allowing the use of exact predicates for robustness in the follow-
While the rst two steps are discussed in detail, most publications Ing steps. In order to convert non-quad elements, initially extracted
only mention the third step brie y. We show that, in practice, the due to ips in the parametrization, QEx relies on a vertex merging
extraction step is not trivial since parametrizations usually contain Procedure which merges vertices based on their local parameter.
numerical inaccuracies and ipped elements. These imperfections Unfortunately, since QEx only merges vertices with equal parame-
cause simple extraction algorithms to generate inconsistent hexa-ter coordinate on a per face basis, it is not able to reliably extract a
hedral meshes containing non-hex elements or entirely missing el-quad mesh if larger areas are ipped, such that whole quads lie in
ements. the ipped region. Our more global iterative post processing proce-

) ) ] ] dure is able to handle such cases by letting ipped and non- ipped
With HexEx we provide a robust algorithm that is able to extract regions cancel each other out.

an all-hex mesh, even from a defective input parametrization. It
consists of the following four phases:

3. Extractionof the hexahedral mesh from the parametrization

1.2 Contribution
1. Preprocessing: Transition functions are extracted and the

parametrization is made numerically consistent. Our two main contributions are a robust hexahedral mesh extraction
algorithm which is able to handle most typical kinds of degenera-
cies in the input parametrization and an open source C++ reference
implementation of our algorithm [Lyon et al. 2016].

2. Geometry extraction: Still containing ipped elements, the
sanitized parametrization is used to extract vertices represent-
ing the output geometry.

3. Topology extraction: Topological information is extracted by

: . . 2 Terminolo
interconnecting previously generated darts. 9y

4. Postprocessing: Topological inconsistencies caused by de-2.1 Mesh
generacies of the parametrization are resolved.

A combinatorial 3-dimensional polytopal complexa mesh that
1.1 Related Work consists of a set of conformirgpolytopes0 d 3, with under-
lying incidence and adjacency relations [Kremer et al. 2012]. The
With CubeCovelieser et al. [2011] presented a rst approach for 0-, 1-, 2- and 3-dimensional polytopes are called vertices, edges,
automatic generation of hexahedral meshes using frame- elds to faces and cells, respectively. Fbr> 0, eachd-dimensional poly-
align the individual hexahedra. For their algorithm, the user de- topeisboundedbgd 1)-polytopes. Two polytopes are considered
signs a coarse hexahedral mesh which covers the whole tetrahedraincidentif one of them is entirely part of the others boundary. Two
input mesh. From this coarse mesh a frame is calculated for eachd-dimensional polytopes are calledijacentif they share a com-
tetrahedron. The parametrization that aligns the tetrahedra as wellmon(d  1)-polytope on their boundary. Two vertices are adjacent
as possible to these frames is obtained by minimizing the energy if they are incident to a common edge.
z
_ . .2 . A mesh is then given a®1 = (V;E;F;C) whereV, E, F and
E(f) = v jr o Xjj"dvol ; C denote the set of vertices, edges, faces and cells, respectively. In
contrast to combinatorial polytopal complexes where vertices are

whereX is the frame- eld,V is the set of all tetrahedra arfd abstract entities, vertices in geometricpolytopal complex have
are piecewise linear functions mapping each tetrahedron into thea geometric embedding.e. a functiong : V ! R" [Kremer
parameter domaiR>. et al. 2012]. In our casa = 3. For a shorter notation, we use

italic letters (typicallyp; q;r; s) for vertices and bold face letters

Li et al. [2012] propose a method for the automatic generation of (0: G: 1 9) for their geometric embedding .

guiding frame- elds. After the frame- eld generation, a series of
operations, such as edge collapses and tetrahedron splits is appliegye jdentify an edge 2 E by the two incident vertices, e. g.=
to obtain asingularity-restricted eld Nieser etal. [2011]dene24 (. ). Analogously, we identify a face = ( pr;p2; = p«) by a

types of singularities, 14 of which inevitably lead to zero volume gequence of vertices, whefeis the face bounded by edges =
tetrahedra in the parametrization. The singularity-restricted eld (..., ) ande, = (pc;p1), for0O<i<k .

only contains the 10 types of singularities that do not. However,

ipped elements may still be present and need to be handled during A tetrahedral mesh consists entirely of tetrahedral cells, i.e. cells
mesh extraction. With our extraction algorithm, these mesh editing bounded by four triangular faces. A tetrahedral cell is also called
operations are not necessary, as it is able to robustly extract all-hextetrahedron or shotét Atetc = (p;q;r;s) 2 C is bounded by the
meshes even in the presence of degenerate tetrahedra. four faces that each are incident to three of the vertices. As a con-
vention, the vertices of the tet are ordered such that the determinant

Jiang et al. [2014] follow a similar approach as Li et al. For a det g p r p s p ispositve.

given frame- eld they present further operations to transform the
parametrization. One example is moving a singularity that runs A mesh is a3-manifold (with boundary) if every point is either
along two edges of a triangle to the other edge of that triangle, locally homeomorphic to a sphere or a half sphere [Kremer et al.
which prevents the degeneration of the triangle in the parameter2012]. The former are called inner, the latter boundary points. We
domain that would have been caused by forcing the two edges torequire as input such a 3-manifold tetrahedral mesh.

run along the same integer iso-line. Due to the robustness of our

algorithm towards degenerate cells, it is not necessary to explicitly 22 Parametrization

remove singular edge con gurations that cause small regions of the ™"

trization to d te.
parametrization fo degenerate In analogy to Ebke et al. [2013] and Bommes et al. [2013], a 3D

With QEx Ebke et al. [2013] presented an algorithm to robustly integer-grid mag is the union of linear mapk, : R3! R? that
extract quadrilateral meshes from an imperfect parametrization of map each teti = (pi;G;ri;Si) 2 M to a tet(u; vi; wi; Xi) 2
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Figure 2: (a) Input tetrahedral mesh. To allow a singular edge in
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As input for our algorithm we require a tetrahedral mesh with such
a relaxed 3D integer-grid map as parametrization.

3 Output Data Structure

The data structure used for our algorithm is based on that of Krae-
mer et al. [2014]. For a volumetric mesh = (V;E;F;C), we
store a set of vertices with a geometric embedding to describe its

the center, the mesh is cut open along the red faces. (b) Mesh ingeometry. The topology is de ned by a generalized map which

parametric space. (c) Output mesh de ned by parametrization.

R2 “ in the parameter domain. The parametrization of two adja-
cent tetstj andt; is related by the transition functiagy . Given

a closed loop of tetéco; C1; i35 Ck ; Co) around an edge that starts

in the cellcp incident toe and passes through all incident cells, the
edgee is de ned to be singular if the accumulated transition func-
tiong, = g, I O o IS Notthe identity [Nieser et al. 2011].
Singular vertices are de ned as vertices incident to other than two
singular edges.

The 3D integer-grid map must satisfy the following constraints:

(A1) The transition functiong; mapping the chart of tef to the
chart of the adjacent tet have to be 3D grid automorphisms,
i.e. be of the form
g ()= ju+ty;
where i is an element of the chiral cubical symmetry group
G, containing the 24 orientation preserving transformations
that map coordinate axes to coordinate axes [Nieser et al.
2011], andj 2 Z2 is an integer translation.

(A2) Singular edges have to be mapped to segments on intege

lines, i.e.
f(p;o) =

for somea;b2 Z,c;d2 R and
the set of singular edges M .

(a;b;d)"  8(p;a) 2 Se ;

2 G, whereS,

(a;b;97;
E is

(A3) Points incident to other than two singular edges have to be

mapped to integer points, i. e.
f(p)=u2238p2S,;
whereS, V is the set of singular points i .
(A4) The image of each tet has to have a positive volume:
det(vi ui w u)> 08¢ 2C:

Ui X

Figure 2 shows an example of a parametrization obeying these con
straints. To allow a singular valence 3 edge in the output, the input

mesh in Figure 2a is cut open along the highlighted faces and the

central edge is mapped onto an integer grid line in Figure 2b. The

regular integer grid then induces the hexahedral mesh in Figure 2c

with the desired topology.

Computing a parametrization that satis es Constraint (A4) is still
an open problem and can even be infeasible for a given frame- eld
[Jiang et al. 2014]. Additionally, due to numerical inaccuracies with
oating-point arithmetic, Constraints (A1) to (A3) are often only
ful lled approximately.

Therefore, we de ne relaxed 3D integer-grid maps in analogy
to Ebke et al. [2013] to be parametrizations that satisfy Con-
straints (Al), (A2) and (A3) approximately and disregard Con-
straint (A4) entirely.

consists of a sdD of so-called darts and pointers interconnect-
ing the darts.

Thesetofdart® V E
such that

F Cisde ned as aset of tuples,

D = f(v;e;f;c) : vs e;es f;f s cg

wheres means “incident to”.

For each dard = (v;e;f;c) 2 D, four connections are stored to
other darts, which are uniquely de ned by:

o(d) = (v%e;f;c)

1(d) = (v;€%f;c)

2(d) = (v;e;f%0)

s(d) = (v;eific?)

where i(d) 6 dand i(d) 2 D. For boundary faces there is no
such 3(d).

Pl ek
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Figure 3: (a) lllustration of ; connections in 3D. Here, a dart

d = (v;e;f;c) is represented by the callwhere the vertex, edge

e and facef are highlighted. (b) ; connections in 2D, where a
dartd = (v;e;f) is represented by the fadewhere the vertex

and edgee are highlighted. In further illustrations, we represeamt

as a small point that is closest to the corresponding entities (bottom
right). o connections are drawn in red,, in green and » in
blue.

In the data structure, only vertices are stored explicitly. Edges, faces
and cells are stored implicitly:

Edges are bounded by the vertices reached via oglpointers.
Faces are bounded by edges reached via oplyand i point-

ers. Cells are bounded by faces reached via all pointers exgept
pointers. One connected component of a mesh consists of all cells
reachable using any pointers.

Note, that, while we have given the de nition of darts for 3-
dimensional geometry, it is straightforward to generalize darts for
n-dimensional geometry. In particular, we get a de nition in 2D
simply by omitting cells and 3 pointers. In the following, we will
often use 2D illustrations to explain concepts as they are both easier
to sketch and easier to understand.



3.1 Properties 4.1 Preprocessing

In this section, we list some interesting properties of the data struc- Our preprocessing consists of two steps. First, we extract the tran-
ture described above. sition functionsg; that map the parameters from the chartiofo

. . the chart oft; . Then, during the sanitization step, we enforce the
Given a setS f ;i 39 and a dartd, the orbit hSi(d) ! 9 P

. : exact ful llment of Constraints (A1) to (A3). The bene t of this is

is de _ned_ as the ,Se.‘t of darts reachable fraby fOHOW'r_'g any that all subsequent steps of the algorithm can employ exact pred-
combination of i's in S [Kraemer et al. 2014]. As a simplied o405 1o check geometric properties, yielding reliable results and
notation, we drop the curly braces when specifyBigxplicitly, simplifying the implementation signi cantly.

e.g.h o; 3i(d)= hf o; 3gi(d).

Two adjacent faces are connected over the whole shared edge: ~ 4.1.1 Extracting the Transition Functions

8d2 D : 8d°2h oi(d) : a(d)2h oi( 2(d)) (1) As a rst step, we extract from the parametrization the transition
functionsg; (u) = j u+ t;j between all adjacent tets. Unfor-

Two adjacent cells are connected over the whole shared face: tunately, it is impossible to recover the matching if the facef

. 0 L . L between the two tets andt; is degenerate. However, this is no

8d2D : 8d°2h o; i(d) 1 (@) 2h o; ai( a(d) @) limitation, since most paranjwetrization techniques x the matchings

prior to the computations of the parametrization based on a frame-
eld. We therefore consider the matchings as given. The integer
translationt; can then easily be calculated by

If M is a hexahedral mesh, we can further formulate the following
properties which hold for alil 2 D and :

Foreachdartl 2 D:

tj = round g; (u) i u
Each face is a quad:

jnh o; 1i(d)j=8 (3) 4.1.2 Sanitizing the Parametrization

Each comer is incident to three faces: The purpose of the sanitization is to ensure the exact ful lment of

jh 1; 2i(d)j=6 (4) Constraints (A1) to (A3). While we made sure in the previous step
that the translationt of the transition functions are exact integers,

Each quad strip within a cell consists of four quads it is still possible that for a vertep its parameteu = f, (p) in

iho: 1 2 1i(d)j=8 (5) cell ¢ is not equal to the transformed parameger fe; (p) from
) ) an incident cellc;, due to the limited precision of oating point
Each cell consists of six half faces: arithmetic.
jh o; 1; 2i(d)j=48 (6) To remedy this, we apply the same strategy as Ebke et al. [2013]:

we pick for each vertex an arbitrary incident cett from which we
propagate its parametarinto all other cells incident te accord-
ing to the respective transition functions. During this procedure, we
have to ensure that Constraint (A1) is ful lled exactly in both direc-
tions, i. e. rounding during any calculation must not occur. Round-
ing can happen when the oating-point representation of a parame-
@ ®) ter in one chart needs a larger exponent than in another chart, thus
losing one signi cant digit in the mantissa. To prevent this, we nd

Figure 4: lllustration of properties 3 to 5. Note, the white darts the largest exponent of all parameterwaf all incident cells. The

in (c) are only shown for orientation, they are not in the set Parameter values ofin c are truncated accordingly before propa-
hoi 1 2 ai(d). gation. Additionally, in order to ful Il Constraints (A2) and (A3),

we round each component ofto the closest integer if the distance
is less than the maximum precisibrof the solver that was used to
4 Algorithm generate the parametrization.

After the sanitization, we only use exact predicates for all calcula-

Our extraction algorithm can be divided into four phases described s in the following steps of the algorithm.

in the following sections. During the geometry extraction, the in-
put tetrahedra are analyzed and checked for intersections with the 42 G trv Extracti
integer grid points in parametric space, yielding the vertices of the ™ eometry extraction

hexahedral mesh which de ne its geometry (Section 4.2). In a sim- Extracting th trv of the hexahedral h ist inlv of
ilar fashion, we extract darts, which get connected to each other =X{acting th€ geometry of thé hexahedral mesh consists mainly o

; : ; — nding all its vertices and their geometric embedding as described
ﬂgg?agl m:str?;()gg)gi)gﬁﬁrg)ctlon, de ning the topology of the hexa in the following section. We also describe the generation of darts

here as this is, like the generation of vertices, a local operation that
For a perfect parametrization, these two steps would already yield can be performed for each tet individually, whereas nding the con-
the desired hexahedral mesh. However, since we aim for a robustnection between darts as explained in Section 4.3.1 involves several
algorithm that is able to extract meaningful hexahedral meshes eventets per dart.
for imperfect parametrizations, we employ two additional steps.
The preprocessing step sanitizes the parametrization, compensat4.2.1 Vertex Extraction
ing for the limited precision of numerical solvers and oating-point
numbers, and thus enforcing Constraints (A1) to (A3) (Section 4.1). As already stated, each integer grid location intersecting with the
In the postprocessing phase, artifacts caused by ipped tetrahedraparametrization de nes a vertex of the hexahedral mesh, or short
such as duplicate vertices, are corrected (Section 4.4). h-vertex. After the previous step, we can use exact predicates, such



as those provided by Shewchuk [1997], to reliably detect such loca1
tions. The algorithm is straightforward and analog to that of Ebke
et al. [2013]. While it would be possible to enumerate all h-vertices
by iterating over all tets and checking if an integer grid point inter-

sects the parameter image of the tet, this would also lead to a lot 0
duplicate vertices, as integer grid locations intersecting a tet on the
boundary may intersect several other tets on their boundary as well.
We therefore iterate over all vertices, edges, faces and cells sepa

D

Input: tetrahedral mesf\; E; F; C), sanitized map,
1: for each h-vertexh with embeddingy and generatog do
for each tett 2 C incident tog do
z  fi(p)
for each orthonormal and axis aligneti ; d»; d; do
if (B2)and (B3)and (B4) then

2
3
4:
5:
6 generate dad = ( z, E; F ; C; t)

rately and exclude their respective boundaries. We call the entity
intersecting with an integer grid point the generator of the h-vertex.

For each generated h-vertex, we compute a geometric embeddin
according to its barycentric coordinates with respect to its genera:
tor.

4.3 Topology Extraction

The topology extraction phase of our algorithm consists of two
steps. First, we extract darts in a similar way we extracted ver-
tices, based on intersections of the integer grid with the tet mesh in

Algorithm 1: Dart extraction

gZBS) The integer plane with one side beiBfg; d;) and extending

into directiond, intersects the tet.

F(zd1;d2)\T eft) 6 ; 9)

(B4) The integer cube with base(z; d,;d2) extending into direc-
tionds intersects the tet.

parametric space as discussed in Section 4.3.1. Then, these darts

are interconnected by carefully navigating through the input mesh
according to Section 4.3.2.

4.3.1 Dart Extraction

The parametrization implies the structure of the hexahedral mesh a
the intersection of the parameter images of the tets with the regular
grid. In Section 4.2.1, we already extracted h-vertices at intersec-
tions of integer grid points with the parameter image of the input
mesh. In this section, we take this concept further in order to ex-
tract the darts that will later de ne the topology of the hexahedral
mesh. We de ne the parametric voluriig of a tett with parame-
ters(u; v; w; X) as:
Te(t)=f u+ v+ w+(1 x:0 19
(7
Furthermore, lez 2 Z 2 be an integer grid point artth ; d, andds
be orthonormal and restricted to the six axis directions. We then
de ne an integer grid edge as
n o}
E(z,;d1)= z+ d; : 0< < 1

an integer grid face as

n 0
F(zdy;d)= z+ W+ W :0<; < 1 ;
and an integer grid cell as
n 0
C(z;ty;dp;d3) = z+ Wi+ W+ W3 :0<;; < 1

Note that we us& rather than to de ne E;F andCin order to
exclude their boundaries.

We now extract a dad for every vertexv, edgee, facef and cell
c of the hexahedral mesh wheres e, es f andf s c. Thus, we
have to nd all tetg, integer grid pointg, and orthonormal vectors

dy;d> andds such that all the following conditions are ful lled:

(B1) The integer grid point intersects the tet.

fzg\T et) 6 ; 8

(B2) The integer line starting atgoing into directiord; intersects
the tet.
E(zd)\T «(t) 6 ;

C(z;d1;d2; ) \ T eft) 6 ; (10)

As an alternative notation fod (v;e;f;c), we will now
used (z E(zd1);F (zd1,02); C(z,d1;T2,d3); t) or short

sd = (zE;F;Ct) wherez, E, F andC are the parameter im-

ages ofv, e, f andc, respectively, in the chart ¢f

Algorithm 1 describes how to extract all darts. Since we already
have extracted all vertices, we do not have to check for Condition
(B1) anymore. Instead we can iterate over all extracted h-vertices
and check for each tet that is incident to the generator of that h-
vertex if Conditions (B2) to (B4) are ful lled. We call darts ex-
tracted for ipped tetsanti darts and refer to all others asgular
darts

4.3.2 Connection Extraction

Having extracted the vertices and darts from the parametrization,
the mesh data structure still lacks connectivity information. In the
following step, we establish connectivity by assigning the four con-
necting darts indicated by; for every extracted dad. In the eas-

iest case, the other darts we want to conmkict were extracted in

the same tet ad. We can then simply look them up in the list of
darts extracted faraccording to the following description. For dart

d = (zE(z,d1); F(z,d1;d2); C(z,d1;d2;d3); t):

o(d) = (z+ d1;E(z;th); F (z,d1;T2); O(z,d1; U2, Ts); )
1(d) = (z E(z;d2); F (2,01, d2); C(z; 01, T2; Ta) ;1)

2(d) = (z E(z;d1); F (2,01, ds); C(z;01;02; Ta); 1)

3(d) = (Z E(zT1);F(z01;d2); A(z,T1; 25 Ta);t) -

For injective parametrizations which only contain trivial transitions
between tets, the darts can be found similarly easily. One can search
in the list of all extracted darts for a match of the above description,
ignoring the tet the dart was extracted for. However, in most real-
world examples, the parametrization will contain transitions which
have to be considered. We therefore give the following conditions
under which we connect two darts:

Two dartsd = (z E;F;C;t) andd® = (2% E%F % C%t9 are con-
nected via an ; pointer if all following conditions are ful lled:

(C1) There exists a chain of adjacent tets; :::;;tng withto = t
andt, = t°



(C2) Letg; be the transition function mapping frotptot; +1 and the descriptions of the start dakt and target dad; . We repeat this
Ok =% G 1 % G g forj<k. process until we nd the target dart, or we run into the boundary of
the input mesh.

Gon (2= 2° or i=0;
Gon (E) = E° or i=1; Input: tet mesh(V; E; F; C), sanitized maj, dartsD
_ o . 1: foreachdartd 2 D do
9n(F)=F or 1=2 2. foreachi 2 0;1;2;3gdo
9 (O = C or i=3: 3: ds d
4 de i (ds)
wherei refers to i, i. e. depending on the type of connection | 5: flast ;
one entity may be different. 6: s  ippedness oft
(C3) Forafacd with parameter imagéu; v; w), we de ne analo- ; Whl:gﬁ; 2_ I(qug. F:Ct)
. . S — ’ 1 ’ (]
gously to Equation (7) o: for v_sacp facef of tett with f °6 fiascdo
Let f¢ be the face shared by tdts andtx+1 . Each face has 12: if f boundarythen
to intersect the parametric image of the three entities that are 13: abort, leave dard without connection
incident to bothd andd®: 14: let g be the transition function ovér
) 15: t teton other side of
Yok (FZO) \ T i(fi) 6 ; or i=0; 16: ds  (9(2);9(E); g(F); 9(O);t)
ok (B)\T i(fx) 6 ; or i=1; 17: de i (ds)
FI\T i(fx) 6 : or i=2: 18 if s 6 ippedness oft then
9o (F)AT (i) ) 19: swapds andd
9ok (O\T 1i(f) 6 5 or =3 20: s  ippedness oft
21: f|ast f
To give an intuition of the meaning of the these conditions, let us| 5. connect dart to dart ind® 2 D with d®= de
consider the ¢ connection. In this case, the chain of tets ful lling . . .
the conditions corresponds to the result of an integer iso line tracing Algorithm 2: Connection extraction

starting atzin to, going into directiortl;, passing through facdsg

and reaching + d in tett,, all while considering the transition 4 4 postprocessing
functions. During tracing, the next tet is entered through the face

that is intersected by the integer iso line. In some cases however,gor perfect parametrizations which do not contain any ipped or

the integer iso line may intersect two faces on their common edge,degenerate tets, the algorithm has already obtained the nal hex
or even three faces on their common vertex. For these cases, Condimesh at this point. However, ipped tets can lead to several kinds

tion (C3) provides a consistent decision which face to choose. Also, o inconsistencies.

note that when tracing the iso line and switching from a tet that is

ipped to one that is not, or vice versa, one has to change tracing di- In such cases, properties 3, 5, and 6 are not ful lled. We observed,
rection, because the new cell simply does not continue into the old however, that the following, weaker properties were ful lled in all
direction. In this case, the tracing stops when the start parameter our tests:

is reached again (under consideration of the transitions). LethSi* (d) = fd 2 hSi(d) : dpropeg andhSi (d) = fd 2

Analogously, for the other ;, the chains correspond to a gener- hSi(d) : d antg
alized form of tracing. For 1, one traces rotationally within the
current face towards the other edge. Fer one traces rotationally
around the current edge. In both cases, the direction of rotation is
uniquely de ned by having to stay in the same integer grid cell. For
3, the other dart is almost always found in the original tet, or, if a
face of the tet aligns with the integer grid face, in the neighboring
tet. If the chain contains more than two tets, all but the rstand last

one are degenerate. Om
Algorithm 2 nds for each dart the four darts to connect to accord-

ing to the previously stated rules. Starting with a diirive can
easily generate the expected partner usinglf this dart was gen-
erated during the geometry extraction we can connect the two darts.
If not, we keep looking in the next adjacent tet that we reach over
the face ful lling Condition (C3). Note that most of the times, there
are two faces that ful Il this condition. Therefore, we ignore the
face that was used to enter the current dart, as this face would bring
us back into a tet that was already checked. Should the other face
be a boundary face, we leave the dart unconnected.

o+ 1 1

When entering the next cell, we have to consider the transition func- _ ] ) ) ) .
tion and update our dart descriptions accordingly. Also, we have Figure 5: Top left: Input mesh. Colors are for visual orientation.
to check whether the ippedness of the tet changed. Whenever we Bottqm: Parametrization. Note that the triangular area is ipped.
pass from a ipped region into a regular one, or vice versa, we swap 10P fight: extracted darts andis.
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Figure 6: Dart annihilation process of the mesh from Figure 5. The gray dotted arrow identi es a pair of dart and anti dart that is annihilated
in the next step. The sets on the bottom track the equivalence classes of the vertices in the bottom row (cf. section 4.4.2)

Foreachdartl 2 D: that only regular darts are left. ThykeSi (d)j = 0 for anyS and
d. Therefore, Equations (11) to (14) become:
jho; 1i"(d)j jh o ai (d)j=2z 8; (11)

i e ) i jh o; 1i(d)j=n 8; (15)
hq; 2i7(d)j jh 1; 20 (dj=2z 6; 12 . SN
. jih 1 2 (.)J.J 1 2 ()J. (12 ih 1 si(dj=n 6: (16)
o i’ (@ ol @i=2 8 (13) o @iz n 8; ar)
ihoi 13 207 (d)j jh oy 15 2i (d)j=1z 48; (14) jh o; 1; 2i(d)j=n 48; (18)
withz2Zand 121= 1 2 1. with n 2 N andn > 0 sinced 2 hSi (d) for anyS andd.

A 2D examp|e of an extracted mesh is given in Figure 5. While In Figure 6, the dart annihilation process is demonstrated for the
Equations (12) to (14) do not apply in 2D, the extracted mesh con- mesh of Figure 5.

tains faces ful lling Equation (11) foe equal to 1 (bottom mid-

dle), 0 (left and right of bottom middle) and (rest). With the 4.4.2 Vertex Merging

postprocessing step, we remove all anti darts and try to make the

extracted mesh ful Il Equations (11) to (14) far= 1. As the last step of our algorithm, we re ne the geometric embed-
ding of the output mesh. As already mentioned above, ipped and
4.41 Dart Annihilation degenerate tets cause several vertices to be extracted for the same

integer grid point. We want to merge those vertices such that only

. T . . one representative is left which is assigned a new geometric embed-
The key idea of dart annihilation is that ipped regions of the ding based on the originally extracted vertices.

parametrization and adjacent regular regions should cancel each

other out. For the merging step, we rst set up equivalence classes for the
) . 0 . vertices. Initially, each vertex is in its own class. Then, we check
Whenever we nd a pair of regular dadtand anti darti” which are for each vertex which is incident to a degeneratet tathether a
connected via any;, we remove these two darts aftoer adjusting the yertex was extracted for the same integer grid location on another
connections of all other darts connected to either d” as follows: face, edge or vertex df If so, we merge the equivalence classes of
the two vertices.
()= i(d); L - . . .
Additionally, to eliminate duplicate vertices caused by ipped tets,
(Cid) = i(d) we perform an additional check during the dart annihilation step.
Whenever we nd a pair of dart and anti dart connected via an
for alli where ;(d) 6 d° we merge the two equivalence classes of the vertices referenced by

. . - the two darts.
After all pairs of regular darts and anti darts are annihilated, each

connected component consists of only proper darts or only anti For the nal equivalence classes we create a new vertex for each
darts. In practice, the only darts left are typically regular ones. Only class replacing its original vertices. If all vertices are inner vertices,

if the majority of the parametrization is ipped will there be more  we simply choose their center of gravity as the geometric embed-
anti darts than regular darts. Since annihilation removes one dartding of the newly created representative. If there are boundary ver-
of each type, only anti darts will be left in this case. While this is tices in the equivalence class, i. e. vertices generated from a bound-
no problem for our algorithm, it is probably a sign that the input ary vertex, edge or face, we use a different strategy only considering
parametrization is erroneous. For the remainder, we will assume these vertices. For each boundary vertex, we collect all boundary



faces incident to the generating entity. We calculate a new position Table 1: Statistics of example models: Number of tets in input mesh
as the point closest to all planes de ned by these boundary faces.# T), number of tets with ipped parametrization (# Flip), number
Since this new position may be far off the original positions, we Of téts with degenerate parametrization (# Deg), humber of hexa-
chose the position of the boundary vertex of the equivalence classhedral cells in output mesh (# H), and timings (t) on an i5 CPU
which is closest to the calculated point. Thus, we ensure that the ge-@ 3-3GHz. BUNNY 1 and 2 refer to the initial and randomized
ometric embedding of the new representative lies on a meaningful Parametrizations, respectively.

position on the input mesh's boundary.

’ Model | #T | # Flip | # Deg | #H | t ‘
CYLINDER 90371 558 376 5160 | 6.8s
FAN PART 4137 48 0 468 | 0.5s
FANDISK 75309 470 21 244 | 2.2s
BLock 38779 210 580 648 | 1.7s
DRILLED HOLE 17299 56 | 1021 | 11347 | 7.9s
(a) (b) (c) SPHERE 61299 30 196 490 | 2.1s
TETRAHEDRON | 32768 23 44 192 | 0.9s
TORUS 333824| 7200 825 | 124412| 99s
BUNNY 1 65766 44 28 | 16612 | 14s
BUNNY 2 65766 | 29286 28 16612 | 36s
ELK 233930| 38001 | 9962 | 100706 | 102s

(d) (e) ®

Figure 7: Comparison of different merging positions. (a): Input CaSes- Typically, a hex mesh optimization algorithm, such as that by
mgstFAN PART.p(b): Parametrization. Fl?ppgedptets are hiéh)lightpe)d !_lvesu etal. [201.5]’ is applied on an extrac_ted hex "?eSh to optimize
in red. (c): Extracted mesh before post processing. (d)—(f): Merged its element quality. Unless stated otherwise, we did not apply any
vertices positioned at center of gravity, center of gravity of bound- suiﬂ optlmlzatl(cj)n Or(‘j tk?e extrallcteq[hhex mesh and show our results
ary vertices only, and closest point to all incident boundary planes. as they are produced by our algorithm.

In Figure 9, we show a common artifact also described by Jiang
et al. [2014]. Often, curves of the singularity graph passing along
the boundary occasionally sink into the inside leading to degener-
ate tets and thus cause dents in the surface of the extracted mesh.
Our vertex merging strategy creates a new vertex for the duplicated
vertices that occur in this scenario and ensures that its position lies
on the surface of the original mesh leading to a faithful boundary
approximation

5 Results

When two parallel curves of the singularity graph intersect at a ver-
tex, they are forced to collapse onto each other in parametric space.
This leads to many clustered ipped tetrahedral cells between the
two curves as seen in Figures 1 and 12. Even for these complicated
cases, our algorithm extracts a meaningful mesh in which the two
singular curves are merged into a single one.

Figure 8: Results of HexEx foFANDISK, BLOCK and DRILLED (CY (b) ©

HoLE. Tets thatare ipped (red) or degenerate (blue) in parameter Figyure 9: Close-up ofBLock. Marked tets in (a) have a degen-

domain are highlighted. erate parameter image. This leads to poor boundary alignment in
(b). After merging with the h-vertices marked red, the boundary of

We use our algorithm to extract hex meshes on a variety of different the output mesh aligns perfectly with that of the input mesh in (c).

meshes and parametrizations that we obtained from an implemen-

tation based on work by Nieser et al. [2011] and Ray and Sokolov

[2015] and summarize the results in this section. Some statistics5.1 Stress test

for these meshes are given in Table 1. Even though all parametriza-

tions contained imperfections, our algorithm was able to extract In order to test the robustness of our algorithm, we set up the follow-

meshes free of ipped hexahedra and non-hexahedral cells in mosting stress test. Given the initial parametrization afNBiy shown



@ (b) © (d) (e)

Figure 10: (a) Polycube parametrization duNNY. (b) Resulting hex mesh. (c) Randomized parametrization constructed by moving vertex
parameters by a random value betweehand2 in each direction while preserving the original polycube boundary constraints. (d) Resulting
hex mesh shows a lot of distortion but the same topology as (b). (e) A few smoothing steps reveal the correct topology.

displacement was larger than 0.4 units. We discuss these failures in
the following section.

5.2 Failure cases

Unfortunately, our algorithm is not able to handle all possible con-
@) (b) © ) gurations of ipped tetrahedra. We identi ed two problematic

cases.
Figure 11: (a) and (c) The singularity graph and ipped tets of

SPHERE and TETRAHEDRON (b) and (d) The extracted all-hex .

meshes. Split vertices  Further challenges appear, when Equations (15)
to (18) are not ful lled forn = 1. This can happen when the tets
around an edge are ipped in such a way that the sum of dihedral
angles (where the dihedral angle of ipped tets is considered nega-
tive) around that edge B less than originally intended. This may
change, for example, an inner valence 5 edge to a valence 1 edge.
In this case, our algorithm extracts non-hexahedral cells as shown
in Figure 13a.

@) (b)

Figure 12: (a) Input meshTorusfor which the singularity graph

and all ipped or degenerate tets are shown. (b) Our algorithm

extracted an all-hex mesh where the touching singular curves are

combined into a single twisted valence two singularity. We applied

5 iterations of setting each vertex to the center of gravity of its inci-

dent vertices to untangle the inner cells. @ ©

Figure 13: (a) Non-hexahedral cell caused by inner valence 1 edge.
in Figure 10a, we perturbed each vertex parameter by a random(b) Reconnecting darts resolves the problem.
value between 2 and2 in each direction while ful lling the origi-
nal boundary conditions, i. e. boundary vertices remained either in a gpke et al. [2013] observed the same behavior in the 2D case and
plane or a line (the intersection of two planes) or a vertex (intersec- we refer to Figure 5 in their paper for an example parametrization
tion of three planes). This causes about half of the tetrahedra to |p |eading to this artifact. They call this phenomenon “lost q_ports“’
and leads to the extraction of many more darts than for the original \yhere a g-port is similar to a 2D dart, because of the 5 expected
parametrization. However, after the annihilation process the num- edge intersections with the input mesh, only 1 is present, while the
ber of remaining darts was identical to that of the undistorted case. gthers are “lost”. We note, however, that the extracted darts allow
Even though the geometric embedding is quite distorted due to thethe representation of a valid all-hex mesh by changing some of the
randomization the extracted mesh has the correct topology as seen pointers (cf. Figure 13b where we reconnected some pointers by
in Figure 10e. hand). Therefore, we would like to reinterpret this behavior as a

We observed the same robustness for all parametrizations withoutfpht vertex”, wr;]ere Sﬁ{?‘e ofthe darts ‘."‘r? exrt]racted at or?e p'gcs a?]d
inner singularities. This suggests that our algorithm is perfectly € restatanother. This assumption Is further strengthened by the

suited for polycube like parametrizations [Gregson et al. 2011; results of the stress test. For all randomized parametrizations, the
Livesu et al. 2013; Huang et al. 2014]. ' " number of darts left after annihilation was constant. We therefore

conjecture that in these cases, the darts can always be reconnected
On meshes with inner singularities, our algorithm is not as robust in a way which yields a valid all-hex con guration. Finding a robust
towards such random distortions. Performing the stress test onand general reconnection strategy is an interesting topic for future
SPHERE(Figure 11) led to the extraction of non-hex elements if the research.



Partial connectivity ~ Currently, our algorithm does not
guarantee that Equation (1) and Equation (2) are fullled.
Figure 14 shows an example where a bad

parametrization of the brown and purple

boundaries leads to two faces only being

partially connected. Similar con gurations

are possible in 3D and lead to partially con-

nected cells shown in the inset.

Both examples can easily be xed. One has to nd the unconnected

darts, connect them, and merge the two vertices. Unfortunately,

there are con gurations which are not trivial to x. Consider again

the example in Figure 5 but with the red area removed in both in-

put and parametrization. The initial extraction shown in Figure 15a

is similar to the original but the eight anti darts extracted for the

red area are missing. Without these darts, the annihilation process @ (b)

converges with more darts left than before (Figure 15b) and leads Figure 16: (a) Tetrahedral input mesBLK . Tets which are degen-

to a mesh with invalid connectivity, since both lower faces are par- g ate in the parametrization are shown in blue, ipped ones in red.
tially connected to the upper face. Obviously, the upper face does )y gxiracted mesh with some parts missing due to their complete
not have enough darts to be fully connected to both lower faces. ¢4|japse in the parametric domain. Top boxes show an inside view

Instead of trying to connect the unconnected darts, an easy way t0qt the front wheel before (left) and after (right) smoothing.
ful Il Equation (1) could be to disconnect the pairs of darts that

form the partial connection. However, this may be problematic for
the application using the hex mesh. Alternative solutions might in-

corporate splitting faces or cells to add more darts which then allow @nnihilation process and no hexahedral cells remain. If, however,
to complete the partial connection. only a subvolume collapses, while the boundary around it remains

on reasonable parameter locations, our algorithm is able to extract

a meaningful mesh, e. g. the front left wheel of the elk.

6 Discussion

While we cannot give any formal proofs and guarantees we empir-
ically found that our algorithm can robustly handle the following
cases.

CY (b) ©

Figure 14: Con guration with partial adjacency. (a) Input mesh.
(b) Parametrization. (c) Invalid output mesh.

(@ (b)

Figure 15: (a) Initially extracted dart structure for input from Fig-
ure 5 with the red areas removed. (b) Darts after annihilation. Note
that both lower remaining faces are only connected via one of the
two darts of the upper edge.

A “perfect” parametrization (which may contain numerical er-
rors on double precision, but no ips or degeneracies) always
leads to a valid hex mesh due to our robust tracing using exact
predicates only.

The very common case of small regions of degenerate and
inverted tets caused by incompatible singularity types of dif-
ferent edges of the same tet as described by Li et al. [2012] or
zigzags as described by Jiang et al. [2014] are handled well
without the need of explicitly editing the singularity graph or
modifying the mesh (Figure 11). The same is true for singu-
larity curves touching the surface as described by Jiang et al.
[2014] (Figure 9).

Polycube parametrizations, which do not contain inner sin-
gularities, succeed even when many defects are present (Fig-
ure 10).

Larger regions of degenerate or ipped tets caused by touch-
ing curves in the singularity graph such ag.ONDER (Fig-

ure 1) or Torus(Figure 12) are handled correctly unless one
of the following problematic cases occurs.

We identi ed three scenarios which prevent our algorithm from ex-

Volume Collapses  As already discussed earlier, undesired inter-
sections between arcs of the singularity graph force entire regions
of the mesh onto the same parameter, causing many tetrahedra to
ip or degenerate in the parametric domain. While our algorithm
often is able to handle the resulting parametrization, this is not the
case if a complete volume between two boundaries collapses. In
Figure 16, we show an example where the antlers and the back left
wheel of B K are collapsed into a sheet and a point, respectively.

tracting a valid hex mesh.

If the extracted data structure contains darts which satisfy
Equations (11) to (14) for & other than 1, 0 or 1, or not

at all*, our algorithm will extract non-hex cells (Figure 13).
For these cases, we conjecture that a reconnection of darts is
always possible to form a valid all hex-mesh, and we hope
such a reconnection strategy can be found in the future.

In such cases, all darts in these regions are eliminated during the

Figure 5c in [Ebke et al. 2013] shows such a parametrization in 2D.
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