Point-Sampled Shape Representations

Why Point-Based Graphics?
- simplicity
- generality
- flexibility
- efficiency?
- point vs. splat-approximation
- GPU processing
- quality?

Overview
- point-based representations
 - shape approximation
 - surface topology
- octree point clouds
- optimized splat subsampling

Point-Based Approximation
- what is the approximation power?
 - error = $O(h^2)$
 - polygons

- error = $O(h)$
 - points
Point-Based Approximation

- what is the approximation power?

\[\text{error} = O(h^2) \]

Point-Based Approximation

- what is the required precision?

\[\text{number} = O(\text{surface area}) \]

Point-Based Approximation

- what is the required precision?

- Points: precision = \(O(\text{sampling density}) \)
 - number = \(O(\text{surface area}) \)

- Splits: precision = \(O(\text{sampling density}^2) \)
 - number = \(O(\text{surface curvature}) \)

Consequences

- pure point-based representations
 - insufficient object space approximation power
 - screen-space dependent sampling resolution
 - screen-space dependent sampling resolution
 - forward mapping techniques independent from scene complexity?
 - efficient culling and adaptive super-sampling techniques required

Consequences

- splat-based representations are (as least) as powerful as polygon meshes
 - locally optimal linear approximation (ellipses)
 - added flexibility (\(C^{-1} \))
 - sharp features can be represented (splat clipping)
Consequences

- splat-based representations are (as least) as powerful as polygon meshes
 - locally optimal linear approximation (ellipses)
 - sharp features can be represented (splat clipping)

Point-Based Surface Topology

- manifold surfaces are at least C^0
- locally independent approximation yields C^0
- visual continuity through overlapping splats (object vs. image space)
- visual smoothness through normal blending
- topology information embedded in a point cloud?

Point-Based Surface Topology

- ϵ-neighborhood
 - symmetric, non-manifold, uniform
 - super-linear complexity
- uniform sampling vs. "r-sampling"
 - geometrical precision
 - topological precision
- k-nearest neighborhood
 - asymmetric, non-manifold, adaptive
 - linear complexity

Overview

- point-based representations
 - shape approximation
 - surface topology
- octree point clouds
- optimized splat subsampling

Point Clouds

- piecewise constant approximation
 - sampling resolution: h
 - $O(h^2)$ sample points
 - $3 \log(h)$ bits per sample
 - total complexity $O(h^2 \log(h))$
 - can we obtain $O(h^2)$ total complexity?
Point Clouds

Octree Point Clouds

Octree Point Clouds

Octree Point Clouds
Zero Tree Coding

O(h²)

Octree Point Clouds

- storage per point
 - 8/4 + 8/16 + ... = 8/3 = 2.67 bit (uncompressed)
 - 1.00 – 1.50 bit (entropy encoded)
- resolution independent : O(h²)
 - coarser octree levels encode many samples
- fast rendering by octree traversal
 - 4 scalar additions and 2 divisions per point
- level of detail representation
Octree Traversal

- fixed translation vectors for cell centers

- leaf node centers

\[y = x + \sum_{k} v_k \]

- modelview + viewport transformation

\[\tilde{x} = x + \sum_{k} v_k x_k = x + \sum_{k} x_k \]

- incremental summation during traversal

Level of Detail

8 octree levels
compression factor
\[\approx 1:24 \]

9 octree levels
compression factor
\[\approx 1:27 \]

10 octree levels
compression factor
\[\approx 1:30 \]

11 octree levels
compression factor
\[\approx 1:33 \]
Level of Detail

Progressive Transmission

Overview

- point-based representations
 - shape approximation
 - surface topology
- octree point clouds
- optimized splat subsampling
Problem Specification
- given:
 - sample points \(p_i \) on a surface
 - approximation tolerance \(\varepsilon \)
- find:
 - minimal set of elliptical splats \(S_j = (c_j, u_j, v_j) \)
 - all samples within \(\varepsilon \)
 - no holes
 - most regular splat distribution

Approximation Error
- distance of a sample point to a set of splats
 \((\text{minimum projected distance}) \)
- replace each splat by an \(2\varepsilon \)-cylinder
- splat overlap in object space?
 - union of solids
 - projected overlap

Surface Structure
- surface samples \(p_i \)
- k-nearest neighbor graph \(N(i,j) \)
- estimated normals \(n_i \)
- surface area element \(\omega_i = r^2 \)
- splats \(S_j \)
- coverage relation \(C(i,j) \)
- surface patches \(P_j = C(*,j) \)

Our Approach...
- sub-problems ...
 - global error control
 - prevent holes
 - optimal splat distribution
- techniques ...
 - one-sided Hausdorff distance (splat generation)
 - discrete coverage estimation (set operations)
 - global relaxation (better than greedy)
Splat Generation
• grow a candidate splat for each point p_i
 – no least squares fitting
 (fixed normal, maximum deviation)
 – align elliptical splats to principal directions

Coverage Estimate
• each sample has to be assigned to a splat
• guarantee sufficient overlap

Splat Generation
• grow a candidate splat for each point p_i
 – no least squares fitting
 (fixed normal, maximum deviation)
 – align elliptical splats to principal directions
 – each selection satisfies error threshold

Coverage Estimate
• each sample has to be assigned to a splat
• guarantee sufficient overlap
• modified coverage relation $C'(i,j)$
Coverage Estimate
- Each sample must be assigned to a splat.
- Guarantee sufficient overlap.
- Modified coverage relation $C'(i,j)$.
- Set operations:
 - Check if active splats cover all samples.
- Complexity depends on
 - Number of active splats.
 - Number of input samples.

Greedy Selection
- Any selection of candidates satisfies the error tolerance.
- Find a selection that covers all points.
- Greedy selection
 - Largest un-covered patch.

Global Relaxation
- Optimize splat distribution.
- Two set operations...
 - Minimize overlap.
 - Remove redundant splats.
- Preserve coverage (local updates only)
 - Kernel of a splat $K_j \subseteq P_j$.
- Iterate over all splats.

Minimize Overlap
- Replace a splat P_j by one of its k-nearest neighbors P'.
- Minimize overlap with nearby active splats.
- Preserve full coverage (kernel K_j).
- Simple local set operations.

Minimize Overlap
- Replace a splat P_j by one of its k-nearest neighbors P'.
- Minimize overlap with nearby active splats.
- Preserve full coverage (kernel K_j).
- Simple local set operations.
Minimize Overlap
• replace a splat P_j by one of its k-nearest neighbors P'
• minimize overlap with nearby active splats
• preserve full coverage (kernel K_j)
• simple local set operations

Remove Redundant Splats
• greedy selection causes redundancy
• remove and re-distribute neighboring active splats

Minimize Overlap
• replace a splat P_j by one of its k-nearest neighbors P'
• minimize overlap with nearby active splats
• preserve full coverage (kernel K_j)
• simple local set operations

Remove Redundant Splats
• greedy selection causes redundancy
• remove and re-distribute neighboring active splats
Remove Redundant Splats

• greedy selection causes redundancy
• remove and re-distribute neighboring active splats

Examples

Examples

input 170K error 0.47 %

422 333

Comparison

• greedy vs. global relaxation

734, 0.29 %
Comparison

- splats vs triangles

Advantages

- exploit full flexibility of splat representations (k-nearest neighbors)
- global relaxation leads to better results than greedy selection
- take full splat geometry into account, not just the centers

Visual Approximation Quality

- approximate normal vectors
- known problem of polygons

Visual Approximation Quality

- approximate normal vectors
- known problem of polygons
Visual Approximation Quality

- approximate normal vectors
- known problem of polygons
 (where phong shading doesn't help)

Phong Splatting

- splat \(S_i = (c_i, u_i, v_i, n_i, \alpha_i, \beta_i, \text{rgb}_i) \)
- \((c_i, u_i, v_i)\) obtained by least squares
 - tangents aligned to principal directions
- \((n_i, \alpha_i, \beta_i)\) obtained by least squares
 - w.r.t. splat parametrization
 - normal vector length doesn't matter

Examples

Examples

Comparison
Comparison

Overview

- point-based representations
 - shape approximation
 - surface topology
- octree point clouds
- optimized splat subsampling

Conclusions

- point-based representations
 - good for screen space blending
 - view-independent sampling causes redundancy
 - hierarchical octree representation
- splat-based representation
 - performance ???

Conclusions

- point-based representations
- splat-based representation
 - same approximation order as polygons
 - ellipses approximate better than triangles
 - overlap more flexible than manifold consistency
 - sharp corners
 - high quality rendering
- performance ???

Conclusions

- point-based representations
- splat-based representation
 - phong splatting improves visual quality
 and allows for sparser representations
 - why is the polygon rate still higher than the splat rate?