
Stable Evaluation of Box Splines

Leif Kobbelt

Computer Sciences Department, University of Wisconsin | Madison

1210 West Dayton Street, Madison, WI 53706-1685, USA

November 8, 1996

Abstract

The most elegant way to evaluate box-splines is by using their recursive de�nition. However,

a straightforward implementation reveals numerical di�culties. A careful analysis of the algo-

rithm allows a reformulation which overcomes these problems without losing e�ciency. A concise

vectorized MATLAB-implementation is given.

Introduction

In [2] the numerical problems which occur when evaluating box-splines by using the recurrence relation,

are discussed. The solution proposed there is based on a test of reliability for intermediate results: If

the point of evaluation x lies too close to one of the break-hyperplanes, the function value is tagged

to be not valid and the function is evaluated at some \safe" point x + " instead. While this method

allows to detect and prevent the in
uence of numerical di�culties, we propose a reformulation of the

recursive algorithm which avoids the occurrence of such numerical problems. Further, it turns out

that, in case of repeated directions, the computational complexity of the algorithm can be reduced

signi�cantly.

Box-Splines

We follow the notation used in [1]. Let the box-spline M

�

: IR

s

! IR be given by the matrix � 2 IR

s�n

with n � s. To evaluate M

�

at some point x 2 IR

s

, we apply the recurrence relation:

(n� s) M

�

(x) =

X

�2�

t

�

M

�nf�g

(x) + (1� t

�

) M

�nf�g

(x� �) (1)

where x =

P

t

�

� is a representation of x by some linear combination of the columns � of �, e.g., the

least norm solution t = �

T

(��

T

)

�1

x. The base case of this recursion occurs when the matrix � is

square. In this case M

�

is the normalized characteristic function of the projected half-open unit box:

M

�

(x) =

1

jdet �j

�

�

(x): (2)

If rank� < s, we set M

�

= 0. The computational complexity of the evaluation can be measured by

the number C(n; s) of recursive procedure calls:

C(n; s) = 2n � 2(n� 1) � � � 2 (s+ 1) = 2

n�s

n!

s!

: (3)

In the description of the algorithm we will use a slightly di�erent de�nition: The spline will be repre-

sented by the matrix

b

� 2 IR

s�k

of pairwise distinct directions and their multiplicities will be given by

a vector � = (�

1

; : : : ; �

k

) with

P

�

i

= n.

1



Computational Complexity

For the least norm representation t = �

T

(��

T

)

�1

x, the coe�cients t

�

and t

�

corresponding to

identical directions � = �(:; i) = � = �(:; j) agree. Consequently, some terms in the sum (1) occur

multiple times. Combining these terms is equivalent to setting t =

e

�

T

(

e

�

e

�

T

)

�1

x, where

e

� :=

b

�j

�

is the matrix

b

� with the columns corresponding to zero components of � deleted. In terms of the

box-spline de�nition via

b

� and �, we have

(k�k

1

� s) M

�

(x) =

X

�

�

6=0

t

�

M

���

�

(x) + (�

�

� t

�

) M

���

�

(x� �)

with �

�

being the row of the (k � k) identity matrix corresponding to the position of � in

b

�. The

complexity of this recursion in the worst case is

C(n; s) � 2k � � � 2k � 2(k � 1) � � � 2(s+ 1) � (2k)

n�s

;

which, especially for box-splines with n > k, is better than (3).

Numerical Instability

The numerical instability of the recursive algorithm stems from the fact that in the base case (2)

the inside/outside-decision is based on intermediate results which are a�ected by rounding errors. For

continuous functions the e�ect of such errors is kept in check by the modulus of continuity but the

characteristic function �

�

is a step function.

The decision procedure is based on two inputs, the translated position vector ~x := x� �

i

1

�� � �� �

i

n�s

and a vector n

H

orthogonal to the hyperplane H = spanf�

j

1

; : : : ; �

j

s�1

g � IR

s

. Note that the problems

arise not because of the rounding errors themselves but because of the fact that they may be di�erent

for semantically identical values ~x

1

and ~x

2

: The value of ~x is not independent of a permutation of the

translations �

i

since rounding errors accumulate during the iterative subtractions.

The same holds for the computation of n

H

which therefore has to be independent of the ordering of

the columns �

j

and must not use other information than H . If this independence is not achieved then

the rounding errors lead to random results for points ~x lying very close to the hyperplane H . However,

it is important to notice that rounding errors do not have to be avoided. It is su�cient to make them

consistent as has already been noted in [2].

The easiest way to compute ~x consistently is to delay all translations until the base case is reached.

We introduce a new vector � = (�

1

; : : : ; �

k

) which is initialized to be zero and rewrite the recursion

(k�k

1

� s) M

�;�

(x) =

X

�

�

6=0

t

�

M

���

�

;�

(x) + (�

�

� t

�

) M

���

�

;�+�

�

(x) (4)

in terms of M

�;�

(x) := M

�

(x�

b

��). The base case takes the form

M

�;�

(x) =

1

jdet

e

�j

�

e

�

(x�

b

��):

The supports of the functions M

�

1

and M

�

2

with corresponding direction matrices

e

�

1

:=

b

�j

�

1

=

[�

j

0

; : : : ; �

j

s�1

] and

e

�

2

:=

b

�j

�

2

= [�

j

1

; : : : ; �

j

s

] share the hyperplane H = spanf�

j

1

; : : : ; �

j

s�1

g. In order

to guarantee that the decision on which side of H a given point ~x lies is made consistently, we have to

make sure that the same vector n

H

2 H

?

is used everywhere. Since the speci�c path in the graph of the

modi�ed recursion (4) leading to a node � does not a�ect the matrix

b

�j

�

, we can use any deterministic

procedure that computes n

H

from

e

� :=

b

�j

�

1

��

j

0

=

b

�j

�

2

��

j

s

alone. In our MATLAB-implementation,

we use the built-in function null(

e

�

T

) which computes a basis for the kernel of

e

�

T

.

2



Optimization

The e�ciency of the algorithm greatly improves if the normal vectors n

H

are computed in advance

and stored in a hash table with 2

k

entries. In the base case (when

b

�j

�

is square), � 2 f0; 1g

k

, because

�

i

> 1 would imply rank(

b

�j

�

) < s and M

�

= 0. Therefore we can interpret the vector � as a binary

number and use its value as the hashing function.

Other optimizations are possible if we do not consider the most general case of box-splines. A common

restriction is that the matrix

b

� have integer entries. In this case, the translations x��

i

can be computed

without rounding errors and therefore the delayed translation is not necessary.

Another restriction, usually made for s = 2, is that every subset of s columns of

b

� be a basis for IR

s

.

In this case, the computationally expensive evaluation of rank(

b

�j

�

) can be replaced by counting the

non-zero entries of �.

MATLAB-Implementation

A concise MATLAB-implementation of the proposed algorithm will be available in the NUMERALGO

library. It consists of three function modules: box eval(), box normals() and box rec(). The user

interface is provided by the function box eval() while the other two functions perform the recursive

computation of the table of normal vectors and the recursive evaluation of the spline respectively.

The function box eval(X,nu,p) encapsulates the calls to the other functions and computes some

global data. The user passes a (s�k)-matrix X (= �) whose column vectors are the distinct directions

in IR

s

de�ning the box-spline (more precisely: the grid where the box-spline is living on). The second

argument, nu, is an array of integers reporting the multiplicities of the directions of X. The last

argument p is an array of points in IR

s

where the spline is to be evaluated. The procedure returns

a vector of function values according to the ordering in p. The computational costs per box-spline

evaluation decrease signi�cantly with increasing number of points in p.

The function box normals(t,k,M) recursively constructs the hash table of normal vectors. We want

to interpret the index vector � 2 f0; 1g

k

as a k-bit binary number which identi�es the normal vector

corresponding to the hyperplane spanned by the column vectors �

i

of � (= row vectors of BoxEv X)

with �

i

= 1. The semantic of the three arguments is as follows: t is the number of vectors that yet

have to be selected in order to obtain a set of s� 1 vectors spanning a hyperplane H in IR

s

. During

the recursion every candidate (= row of BoxEv X) is considered and k indicates which one is next.

Finally the bit-vector M indicates which rows already have been selected. At the root of the recursion

tree, we have t = s� 1, k = k and M = [0 : : : 0].

If at some node in the recursion tree k < t then no valid leaf occurs on this subtree and the recursion is

aborted. Otherwise the table is split into the left and right half such that the addresses of the normal

vectors re
ect the value of the kth bit of a binary number.

The function box rec(n,m,Y,t) is the implementation of the modi�ed recursive evaluation algorithm.

To minimize the number of transpose operations, this implementation uses the matrix BoxEv X = �

T

with the directions as rows vectors. The argument m (= �) is passed through the recursion to register

the current position within the recursion tree. This information is necessary to perform the delayed

translation. For optimization purposes, the least norm representation t (= t) is passed as an argument

instead of recomputed. The same holds for the matrix Y which solves the normal equation for t. Both,

t and Y, have to be updated only when a direction vector drops out of the matrix BoxEv X. This

happens when one of the entries nu[i] (= �

i

) turns zero during the recursion.

To demonstrate the use of the function box eval(), an additional script-�le, demo.m, is included.

Three examples for box-splines on IR

2

are shown: the biquadratic tensor product Box-spline (Fig. 1),

the Zwart-Powell-element (Fig. 2) and the second order Courant-element (Fig. 3).

Acknowledgements

I would like to thank Carl de Boor for acquainting me with the problem and for helpful discussions.

3



0
5

10
15

20

0

5

10

15

20
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1: Biquadratic tensor product Box-spline: � =

�

1 0

0 1

�

, � = (3 3).

0
5

10
15

20

0

5

10

15

20
−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 2: Zwart-Powell element: � =

�

1 0 1 1

0 1 �1 1

�

, � = (1 1 1 1).

References

[1] C. de Boor / K. H�ollig / D. Riemenschneider, Box Splines, Springer Verlag Berlin (1993)

[2] C. de Boor, On the evaluation of box splines, Numer. Algorithms 8 (1993) 5{23

0
5

10
15

20

0

5

10

15

20
0

0.1

0.2

0.3

0.4

0.5

Figure 3: Second order Courant element: � =

�

1 0 1

0 1 1

�

, � = (2 2 2).

4


