
EUROGRAPHICS 2010 / T. Akenine-Möller and M. Zwicker
(Guest Editors)

Volume 29 (2010), Number 2

Exact and Robust (Self-)Intersections for Polygonal Meshes

Marcel Campen and Leif Kobbelt

Computer Graphics Group, RWTH Aachen University, Germany

Abstract
We present a new technique to implement operators that modify the topology of polygonal meshes at intersections
and self-intersections. Depending on the modification strategy, this effectively results in operators for Boolean
combinations or for the construction of outer hulls that are suited for mesh repair tasks and accurate mesh-
based front tracking of deformable materials that split and merge. By combining an adaptive octree with nested
binary space partitions (BSP), we can guarantee exactness (= correctness) and robustness (= completeness) of
the algorithm while still achieving higher performance and less memory consumption than previous approaches.
The efficiency and scalability in terms of runtime and memory is obtained by an operation localization scheme.
We restrict the essential computations to those cells in the adaptive octree where intersections actually occur.
Within those critical cells, we convert the input geometry into a plane-based BSP-representation which allows
us to perform all computations exactly even with fixed precision arithmetics. We carefully analyze the precision
requirements of the involved geometric data and predicates in order to guarantee correctness and show how
minimal input mesh quantization can be used to safely rely on computations with standard floating point numbers.
We properly evaluate our method with respect to precision, robustness, and efficiency.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—

1. Introduction

Changing the topology of polygonal surfaces along curves of
intersection has proven to be a complicated task. Operations
of this kind are necessary in various applications, ranging
from the computation of Boolean combinations to the repair
of self-intersecting meshes and the tracking of surfaces of
deforming material (cf. Figure 1). The correct and consistent
determination of the intersection loci is numerically hard to
handle, and the discrete nature of a polygonal mesh, consist-
ing of entities of differing dimensionality, introduces further
challenges that have to be met in order to achieve robustness.

Boolean set operations on polygonal meshes are a com-
mon practice in modeling tools, CAD/CAM applications,
simulation systems and many other areas of computer graph-
ics. They implement the intuitive concept of removing or
adding solid parts in order to construct complex objects from
simpler ones. However, existing methods have various draw-
backs, ranging from robustness issues to poor performance,
due to the described challenges in intersection handling.

Related applications that similarly require the topology of

meshes to change, like mesh repair or front tracking, face
the same problems. The input is a mesh that contains self-
intersections and/or redundant internal structures, possibly
introduced by merging or splitting of soft material during
the process of deformation simulation. These artifacts have
to be resolved by changing the topology of the represented
surface at the intersections to obtain a plausible result.

Figure 1: Illustration of (self-)intersections in polygonal
meshes (cut open for visualization, cuts yellow). These are
resolved by modifying the surface topology, e.g. resulting in
Booleans or outer hulls depending on the specific strategy.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

M. Campen & L. Kobbelt / Exact and Robust (Self-)Intersections for Polygonal Meshes

We present a general scheme that is able to perform such
topology changing operations on polygonal meshes exactly
and robustly, i.e. it is algorithmically correct and complete,
producing accurate output for any valid input. Compared
to state-of-the-art methods that exhibit these features, we
achieve higher performance and a smaller memory footprint.
The main ingredient, which is the key to achieving robust-
ness and exactness while maintaining high performance, is
a paradigm of plane-based geometry representation and pro-
cessing. By applying it rigorously, it allows us to completely
avoid arbitrary precision arithmetics that are commonly em-
ployed for the sake of robustness in this context.

The explicit handling of all possible intersection constel-
lations and degenerate contact situations, that is necessary
in most methods that deal with intersecting meshes, is error-
prone and leads to high algorithmic complexity. Polyhedra
representation schemes that rely on binary space partition-
ing (BSP) have shown to be able to greatly reduce efforts that
have to be spent on this issue. They fit nicely into the plane-
based setting, and we employ them to reduce complexity and
achieve robustness in an elegant manner.

In order to significantly improve efficiency, we do not
process the input objects globally. We build upon the fact
that actual changes to the input only have to be made at
the (self-)intersections and apply an operation localization
scheme. The intersection region is covered by a set of small
volume cells, and processing is performed locally within
each cell. The global solution is then composed from the
local solutions and unaltered portions of the input.

The rest of this paper is structured as follows: In Chap-
ter 2 we introduce previous and related work that our ap-
proach builds upon or can be compared to. In Chapter 3 we
give a description of the paradigm of plane-based geome-
try representation that is the key ingredient of our localized
intersection handling scheme presented in Chapter 4. The
application of these concepts to the problem of Boolean op-
erations is then presented in Chapter 5 and extended to the
construction of outer hulls for mesh repair and mesh-based
front tracking in Chapter 6. Finally, experimental results and
a discussion are provided in Chapters 7 and 8.

2. Related work

Boolean operations for polyhedral solids have a long history
of notorious robustness issues since they were introduced in
the 1980s [RV85, ABJN85, LTH86]. By implementing such
methods with arbitrary precision arithmetics and explicitly
handling numerous difficult case distinctions and all kinds
of degeneracies, one could possibly achieve accuracy and
robustness, but at the price of unacceptable performance.

Sugihara and Iri [SI89] introduced the concept of plane-
based representations for polyhedra. By using plane equa-
tions as primary geometric information they were able to
perform rudimentary modeling operations robustly. This

idea was later picked up by Fortune [For97] and coupled
with symbolic perturbation techniques in order to achieve
more general modeling operations – at the expense of in-
creased algorithmic complexity.

Naylor, Amanatides, and Thibault [TN87, Thi87, NAT90]
discovered that binary space partitioning (BSP) structures
can be used to represent polyhedral objects, and Boolean op-
erations can be performed by merging such structures. The
implementation of this merging procedure turns out to be
much simpler than other approaches due to its recursive na-
ture. Additionally, numerous case distinctions are avoided,
and degeneracies do not require special attention.

Quite recently Bernstein and Fussell [BF09] married these
two concepts of plane-based geometry representation and
BSP merging with the goal of constructing exact and ro-
bust Boolean operators with low algorithmic complexity. In
our work, we build upon this promising idea. They managed
to achieve this goal within a system that processes polyhe-
dral objects that are already represented by plane equations
– conversion from other representations like standard polyg-
onal meshes requires repair heuristics and may affect cor-
rectness. Additionally, efficiency was mainly achieved for
the inner loop of the processing, which lends the system to
sculpting applications, but costly pre- and post-processing
steps that perform multi-stage conversions between different
types of representation lead to a reduced overall efficiency.
Finally, their method outputs a polygon soup without con-
nectivity information, which implies additional efforts if the
face neighborhood needs to be established.

Hence, the operations provided by the CGAL package
[GHH∗03] probably still embody the state-of-the-art in ro-
bust, exact Booleans. They are able to perform calculations
with arbitrary precision arithmetics and operate on a Nef
polyhedra structure [Nef78]. While this is able to represent
dangling and isolated mesh elements as well as open bound-
aries, this generality is rarely needed in practice. The re-
quirement of arbitrary precision arithmetics for robust op-
eration significantly affects efficiency. Additionally, the un-
derlying data structure is fairly memory inefficient and thus
inhibits the processing of large meshes. In contrast, our
scheme, applied for Booleans, is guaranteed to produce cor-
rect results by using only fixed precision arithmetics and
consumes far less memory.

Operation localization schemes have been employed
mainly for two reasons: in order to increase efficiency and
in order to restrict quality-impairing operations to regions
where they are inevitable. In the area of intersection han-
dling, Bischoff and Kobbelt [BK05] applied localization to
the problem of model repair, Wojtan et al. [WTGT09] as well
as Du et al. [DFG∗06] in order to handle topological changes
in deforming meshes, and recently Pavić et al. [PCK09] em-
ployed such a scheme to the computation of Boolean oper-
ations on solids. In all these cases, only the regions that are
actually affected by some change are processed. They are re-

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

M. Campen & L. Kobbelt / Exact and Robust (Self-)Intersections for Polygonal Meshes

placed by substitute parts obtained by volumetric iso-surface
extraction [LC87, JLSW02] that can be performed robustly.
However, the application of such schemes usually requires
the modified mesh parts to be stitched to clipped unmodi-
fied parts. The requisite operations tend to introduce severe
robustness issues. In contrast, during our plane-based pro-
cessing, this clipping turns out to be an easy task.

The general limitation of the aforementioned and other
methods that use volumetric representations to deal with
intersections and topology changes is that of discreteness:
small or nearby surface features are not resolved correctly
due to a limited resolution. Varadhan et al. [VKSM04,
VKZM06] presented criteria for the adaptive subdivision
of volumetric grids that at least allow to give guarantees
regarding topological correctness during conversion to and
from such representations. These could possibly be applied
in these methods in order to enhance the quality of the out-
put, but only to a certain level and at the expense of a higher
complexity that strongly depends on the feature structure.

3. Plane-based geometry representation

The primary geometry information commonly used in the
representation of objects by polygon meshes are the vertex
coordinates. The geometry of the edges and faces is implic-
itly defined by these values. In contrast, we choose to explic-
itly represent the geometry of the faces by plane equations
and let vertices be defined implicitly by plane intersections.

3.1. Basic concept

The concept of plane-based representation of polygonal
meshes was first described by Sugihara and Iri [SI89]. This
kind of representation provides one important advantage
when it comes to tasks that involve changing the topol-
ogy of solids represented by meshes like the evaluation of
Boolean expressions: no new primary geometry information
has to be constructed to obtain the resulting polyhedron – it
is composed of a subset of the planes of the input polyhedra.
Hence, opposed to the case of using vertex coordinates, that
inevitably necessitates the construction of new geometry in-
formation, only geometric decision predicates are required
to compose the output polyhedron from the face planes of
the input. Since the input is usually given in a numerical rep-
resentation with finite precision, we can determine an upper
bound on the precision that is needed to make correct de-
cisions. The a priori knowledge of this upper bound allows
us to use fixed precision predicates that are specifically tai-
lored to the precision required in the worst case, resulting in
a vastly better performance compared to techniques for ar-
bitrary numerical precision, that are usually required when
constructions are part of the processing.

Our processing is rigorously based on this paradigm of
plane-based geometry representation that allows us to per-
form fully robust, exact computations using only fast fixed

precision predicates. These predicates [BF09] take planes
as arguments and check coincidence and co-orientation of
planes, orientation of a plane with respect to a point defined
by the intersection of three planes, and whether three planes
intersect in a unique point. The latter one can also be used in
negated form to check if three planes, that are known to in-
tersect in a common point, even intersect in a common line.
We implement them using filtering techniques proposed by
Shewchuk [She97].

3.2. Exact conversion

We consider the conversion from vertex-based mesh repre-
sentation to our internal plane-based representation an in-
tegral step of our processing. Conforming to our goal of
achieving exact operations, we strive to perform this con-
version robustly and without error.

Let the vertex coordinates of the input mesh be repre-
sented with a precision of L bits including sign, which means
that vertices are located at one of 2L positions uniformly
spaced within the bounding box along each axis. Further
let δ ≤ 2K−1−L be the relative length (in max-norm) of the
longest edge in the mesh (relative to the bounding box),
which is equivalent to saying we need K bits to represent
edge vector coordinates.

The coefficients of the plane equation nxx + nyy + nzz +
d = 0 for a planar face F with vertex positions p0,p1,p2, . . .
can be computed by matrix determinants. The most complex
one is d =−|p0 p1 p2|, composed of six triple products that
need to be added or subtracted (nx, ny, and nz are sums of
six double products only). It can also be computed from dif-
ferences due to |p0 p1 p2|= |p0 p1−p0 p2−p0|. Since each
triple product multiplies one vertex coordinate (L− 1 bits
plus sign) with two edge vector coordinates (K−1 bits plus
sign), we end up with a (conservatively estimated) maximum
precision of M = (L−1)+ 2(K−1)+ 3 + 1 bits (including
one sign bit) that is needed to guarantee exact calculation.
By substitution we obtain M ≥ 3L + 2 log2 δ + 3, relating
vertex coordinate precision L and plane coefficient precision
M by the maximum edge length δ.

Using this formula, one can determine the precision the
data types and predicates for the planes need to be tailored
to in order to handle the desired class of input. In our pro-
totypical implementation we choose to embed plane coeffi-
cients into standard floating point numbers (M = 53), since
the floating point units of modern CPUs are highly opti-
mized and much work has been done on adaptive exact pred-
icates for floating point numbers [She97, Pri91]. Then, as-
suming for instance that the input is represented with L = 20
bits precision, we end up with an allowed maximum rel-
ative edge length of δ ≤ 2−5. Moreover we can explic-
itly exploit the fact that x86-CPUs internally use extended-
precision floating point numbers (M = 64) anyway (e.g. ex-
posed as long double by most C/C++ compilers), and

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

M. Campen & L. Kobbelt / Exact and Robust (Self-)Intersections for Polygonal Meshes

for instance allow an input precision of L = 22 bits and even
obtain δ≤ 2−2.5 ≈ 0.18 which should be satisfied in almost
all practically relevant cases. For δ≤ 2−5.5 ≈ 0.022 we can
even handle full IEEE 754 single precision input (L = 24
bits) while guaranteeing exact conversion.

Note that these precision and/or edge length bounds that
are imposed by a specific implementation do not really re-
strict the class of input meshes that can be handled correctly:
one can always apply quantization to the input coordinates
and/or subdivision to long edges in order to make the input
conform to the bounds. Using quantization may of course
introduce geometrical error by shifting vertices slightly, but
only in the magnitude order of about 2−20 or even much
smaller when assuming or enforcing the absence of very
long edges. Most importantly, the inner topology of the poly-
gon mesh is not affected, which is in contrast to Bernstein
and Fussell [BF09] where vertices are often split into a col-
lection of valence 3 vertices due to round-off error, addition-
ally introducing nearly degenerate polygons inbetween the
original input polygons.

3.3. Polygon construction

With this exact plane construction at hand, we are now able
to convert a mesh of planar polygons into its plane-based
representation without error. If the input contains non-planar
polygons (usually due to slight numerical deviations), we
can triangulate them to yield a geometry that can be repre-
sented by planes. We use a plane-based polygon data struc-
ture [BF09] that represents a polygon by its supporting plane
(constructed from three of the vertices of the polygon) and a
list of bounding planes (that are non-coplanar with the sup-
porting plane and implicitly define the edges) ordered circu-
larly. Each of these bounding planes is constructed from two
consecutive vertices of the polygon and an arbitrary third
point that does not lie in the supporting plane and is repre-
sentable with input precision.

4. Localized intersection handling

We now present our general scheme for exact and ro-
bust handling of (self-)intersections in plane-based polygon
meshes. In the subsequent chapters, it is applied to specific
problems. The basic concept is illustrated in Figure 2.

Figure 2: 2D-Illustration of the basic concept: an octree is
refined to the intersections. BSPs are nested into the affected
cells to locally perform the appropriate topological changes.

4.1. Localization

We construct a set of disjunct convex spatial cells, such that
their union contains the curves of intersection of the input
mesh(es) in its interior. Additionally, in order to avoid spe-
cial case handling, we require their bounding planes to con-
tain none of the vertices of the input. We call them critical
cells. Only within these critical cells processing is applied
locally. We strive to construct the critical cells in a way that
they contain (i.e. are intersected by) an approximately con-
stant number of input polygons. While the BSP techniques
we are going to apply within the cells have time complexities
of at least O(n logn) (n being the number of input polygons)
in the global case, we are thereby able to lower that to about
O(
√

n) plus cell construction and final joining of the local
results in many cases. This is due to the fact that the effort
per cell is in the order of O(1) and the number of critical
cells is usually O(

√
n) if the mesh resolution is somewhat

uniform; if it varies significantly, i.e. the input contains poly-
gons of widely differing sizes or bad aspect ratios, this num-
ber of critical cells might be higher or lower. One reason is
the fact that the local mesh resolution in the intersection re-
gions might differ from the average. Another reason for this
sensitivity to non-uniformity is the fact that polygons might
span multiple cells. This might induce noticeable overhead
if very large or long polygons intersect smaller cells.

While sophisticated methods could be used to cover the
intersection regions with as few disjunct convex cells con-
taining a constant number of polygons as possible, we
choose to construct such cells by fairly simple adaptive re-
finement of an octree. This scheme does not yield the mini-
mum number of critical cells possible, but we felt that further
efforts, e.g. for the construction of more flexible kd-trees,
would be too expensive to be overcompensated by the con-
sequent improvement in cell count.

We start with an octree root cell encompassing the whole
collection of input objects, and then recursively subdivide a
cell whenever its closed volume contains a (self-)intersection
and still more than m input polygons. This value m is the
only parameter of our method, and a good general choice
proved to be m = 17, since it consistently resulted in mini-
mal runtimes in most of our experiments. Using this subdivi-
sion rule the octree adapts to the local mesh resolution. De-
pending on the particular application, different methods can
be used to determine if a cell contains a (self-)intersection
(cf. Chapters 5 and 6). Note that this test may also be made
conservative for efficiency reasons. We keep track of poly-
gons intersecting cells by storing links at cells and dis-
tributing them to the children when subdividing. Polygon-
cell intersection tests can be performed inaccurately for ef-
ficiency by testing against sufficiently enlarged cells since
false-positives are not problematic. The leaf cells that con-
tain (self-)intersections are the critical cells we apply our lo-
cal processing to – they are disjunct, convex, and contain
all curves of intersection by construction. By positioning the

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

M. Campen & L. Kobbelt / Exact and Robust (Self-)Intersections for Polygonal Meshes

octree in a way that the (axis-aligned) cell boundaries are
located between possible vertex coordinates, we also easily
prevent special cases arising from input vertices, edges, or
faces lying exactly on the cell boundaries.

4.2. BSP techniques

As observed by Thibault and Naylor [TN87] any polyhe-
dron can be represented by a BSP-tree with labeled leafs.
Each leaf corresponds to a spatial cell
and is labeled ‘inside’ or ‘outside’, as il-
lustrated here in 2D. The boundary be-
tween inside and outside cells defines
the polyhedron. Such a BSP-tree can be
constructed by recursively inserting the
polygons of the polyhedron one by one into an initially
empty BSP-tree and creating new splitting planes on de-
mand [TN87]. Afterwards, each cell of the BSP-tree lies ei-
ther completely inside or completely outside of the polyhe-
dron and is labeled accordingly. For self-intersecting meshes
inside and outside is not inherently defined, such that only
(initially) unlabeled BSPs can be constructed and labels have
to be subsequently created depending on the application sce-
nario. Note that these inside/outside labels implicitly specify
the surface topology in the BSP – in its core the task of topol-
ogy modification reduces to label switching in this setting.

Since we are going to apply operations locally, we need to
nest BSPs into the critical cells, i.e. we need to restrict them
to the volume of a convex region. We clip the polygons that
are to be inserted against the boundary planes of that criti-
cal cell by the splitting routine presented by Bernstein and
Fussell [BF09]. Note that it is this clipping that requires the
critical cells to be convex. Since we are performing all req-
uisite polygon clipping and splitting operations in the plane-
based setting, no error is introduced: only exact predicates
are used, no geometric constructions are involved.

In order to obtain a polygonal boundary representation
from a BSP representation in the end (after application-
dependent label switching, cf. Chapters 5 and 6), we ap-
ply the boundary extraction method presented by Thibault
[Thi87]: a polygonal representation of a splitting plane node
is sent down the subtrees of that node, partitioning it into
fragments that separate exactly two cells. If a fragment sepa-
rates an inside from an outside cell, it is part of the boundary.
In the end this yields a complete polygonal boundary repre-
sentation without connectivity information. Our method for
establishing connectivity is presented in the next section.

For the task of determining BSP-cell labels when non-
oriented or self-intersecting meshes are converted into BSPs,
specific tools are required. Note that the volume represented
by the BSP is not partitioned into inside and outside, but
simply into different components (sets of BSP-cells) by the
polygonal input surface in this case (cf. Figure 3, left). For
some applications (cf. Section 6.2) it is necessary to identify
them and set labels accordingly, i.e. mark some components

(more precisely: their contained cells) as inside, the others as
outside. We determine these components by a flood-filling
on the BSP-cells that respects the input surface as limit.
In order to guide this flood-filling, we determine the BSP-
cell adjacency graph, that contains an edge between two
cells iff they share a common cell face. This is done by a
slightly modified variant of the boundary extraction method
of Thibault: the polygonal fragments that separate two arbi-
trary cells correspond (are dual) to the edges we need for our
adjacency graph (cf. Figure 3, middle). We also send the in-
put polygons down the BSP-tree to determine those edges
that connect cells that are separated by the input surface.
These edges are deleted in the graph, and we can start our
flood-filling on the resulting graph to conquer the compo-
nents of the partitioned volume.

4.3. Clipping and connecting

The regions of the input meshes that are affected by inter-
sections have to be replaced by the modified boundaries ob-
tained from the processing by BSP techniques. To this end,
we clip the input meshes against the critical cells. This effec-
tively restricts the input meshes to the non-critical region.
We again perform this clipping in the plane-based setting
to achieve exactness and robustness. The input meshes, rep-
resented by a mesh data structure based on halfedges, are
partially transformed into plane-based representation first of
all, maintaining connectivity: all polygons intersecting crit-
ical cells are converted and each polygon bounding plane
is associated with the respective halfedge. Each polygon of
these plane-based mesh parts is then clipped against each
critical cell it intersects by successively splitting it by the
six boundary planes of a cell and discarding the inner part.
The clipping is performed using an extended version of the
polygon splitting
routine used in Sec-
tion 4.2 that maintains
connectivity appropri-
ately and creates new
halfedge and vertex
entities where required.

In the end, all that is left to do is to establish full connec-
tivity in order to create a mesh out of the polygonal boundary

Figure 3: Left: critical cell with local BSP, partitioned into
four components by the input surfaces (thick lines). Middle:
the corresponding BSP-cell adjacency graph, edges dual to
input polygons dashed. Right: extracted boundaries of the
four components conquered by flooding in the graph.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

M. Campen & L. Kobbelt / Exact and Robust (Self-)Intersections for Polygonal Meshes

parts. The part in the non-critical region still is connected,
but the polygons within a critical cell need to be connected
(local connectivity) and the connectivity between these crit-
ical parts and between critical and non-critical parts (global
connectivity) has to be established. We do this by identify-
ing vertices, defined implicitly by plane triples, of different
extracted polygons that are coincident. This can be decided
exactly using the orientation predicate.

Local connectivity: Since, for a good choice of parame-
ter m (cf. Chapter 4.1), the number of polygons in a critical
cell is low, we can test each vertex against each other – the
application of more sophisticated techniques is needless at
this scale. In this way we obtain shared-vertex information
within the critical cell.

Global connectivity: In order to avoid testing each ver-
tex against each other – which would be prohibitively costly
at this global scale – we make use of links between input
polygons and corresponding extracted polygons we maintain

critical non-critical
clipped

input

during BSP-tree construction
and extraction, as illustrated
here. This allows us to re-
strict vertex coincidence tests
to fragments of the same
original polygon. Note that
in general also fragments
of adjacent original polygons
could need to be connected,
but the special positioning of the octree effectively prevents
this (cf. Section 4.1).

As the extracted polygon set does not necessarily form
a polygonal complex, T-junctions may be present. These
can be resolved without affecting geometry by simply
introducing an additional degenerate 180◦ corner in the
opposite polygon, or by splitting this polygon in two
with a new edge. We detect loops of topologically open
halfedges that are completely linear by using our exact
collinearity predicate. Those loops of length larger than
two halfedges contain T-junctions,
as illustrated in the opposite figure.
We determine the relative order of
both sides’ T-vertices along the line
(exactly using the orientation pred-
icate again) and per halfedge col-
lect an ordered list of the opposite T-vertices that are to be in-
serted on that edge. Afterwards, we convert the plane-based
mesh parts into standard representation by computing coor-
dinates for each involved vertex and topologically incorpo-
rating the collected T-vertices into the polygon edges. Com-
putation of the coordinates of a vertex involves intersect-
ing three planes. This can be done to any desired precision
by techniques presented by Priest [Pri91]. Of course, if not
computed to full precision, but for instance rounded to input
precision, a small geometrical error is introduced, that – in
rare cases – might also lead to microscopic self-intersections

Figure 4: 2D illustration of two input surfaces intersecting
within a critical cell, their BSP-representations (inside cells
colored) and the merged BSP (using “intersection” logic)

of the output. This is an instance of the omnipresent geomet-
ric rounding problem, see e.g. Li et al. [LPY05] for further
details on this topic.

Note that the application of BSP-based techniques in-
troduces some (purely topological) polygon fragmentation.
While this is heavily reduced and locally restricted to the in-
tersection regions due to our localization scheme, it might
still be desirable to eliminate unnecessary fragmentation. A
mesh simplification procedure [KCS98] tailored to condens-
ing only exactly coplanar polygons can be applied for this
task without impairing accuracy of the result.

5. Boolean operations

Using the topology modification scheme presented in the
last chapter, we are now able to perform truly exact, ro-
bust Boolean operations on polygonal meshes that represent
solids. Our goal is to provide a method that is efficient on
the whole, i.e. from standard polygon mesh input to poly-
gon mesh output, eliminating the drawbacks of the method
of Bernstein and Fussell as outlined in Chapter 2.

The (conservative) intersection test required for the refine-
ment criterion of the octree is very simple in this case, since
intersections occur between different input objects: when-
ever an octree cell is intersected by different meshes, it is
split. Within a critical cell, we construct a labeled BSP for
each input object. Inside/outside labels are obtained from
the orientation of the polygons. These BSPs are then re-
cursively merged using the technique proposed by Naylor et
al. [NAT90] and the desired logical expressions are applied
to the labels at the leafs. This results in a BSP-representation
of the Boolean combination restricted to the critical cell (cf.
Figure 4), and we can extract the polygonal boundary.

After establishing connectivity, some of the non-critical
parts remain unconnected, as illustrated
here. These parts with open boundaries
do not belong to the surface of the actual
Boolean combination – they lie in its in-
terior or exterior and are deleted in order
to obtain the final result. Special attention
has to be paid to non-intersecting compo-
nents. Note that only objects that actually
intersect are dealt with by now. In constellations where input
objects do not intersect, or are composed of several disjunct
components, which do not all intersect, we have to take ad-
ditional measures to evaluate their nesting and decide which

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

M. Campen & L. Kobbelt / Exact and Robust (Self-)Intersections for Polygonal Meshes

ones to keep and which ones to discard. We apply a ray-
shooting approach [Hav99] making use of our octree as spa-
tial search structure [FP02] to speed up this process.

6. Outer hull construction & front tracking

Various methods for tracking the surface of fluids and other
deformable materials explicitly by a polygon mesh have
been presented in the past [GGL∗95, TBE∗01, Jia07]. Op-
posed to approaches that implicitly capture such surfaces,
e.g. level set methods [Set99], they do not suffer from alias-
ing caused by an underlying discrete grid and hence are able
to handle structures of much higher detail. However, they in-
troduce the need for an explicit handling of changes in sur-
face topology. Some approaches basing on imperfect heuris-
tics with fall-back strategies for the case of failure have been
presented [BLS03,LT05,BB09]. Other methods make use of
implicit, volumetric representations and (partially) resample
the surface [WTGT09,DFG∗06,Mül09]. Unfortunately, this
approach in general removes any surface detail in the prox-
imity of the topological change or – depending on the geom-
etry – even farther away, and small material parts might get
lost. Making use of our topology modifying outer hull con-
struction that is presented in the next section, we are able to
handle the topological events that occur during such simula-
tions robustly and exactly without altering surface geometry.

Besides this dynamic setting, there are closely related
tasks concerning mesh repair in static configurations. Our
technique can, for instance, be used to construct a geometri-
cally meaningful manifold mesh from a mesh that contains
self-intersections and superfluous internal structures. In this
context, the application of some concept of an outer hull
(in a volumetric setting) has been proposed by several au-
thors [BPK05, NT99, ABA02].

6.1. Basic concept

The fundamental difference between these repair and front
tracking tasks and the Boolean operations is the fact that in-
tersections might not only happen between different objects,
but also within one object. Hence we have to exchange the
method for determining the inside and outside of our final
object – it is not defined by some Boolean expression.

We define the inside of the material to be the volume that
is not reachable from infinity without crossing the surface,
the outside to be the volume that is reachable. We call the
boundary between the outside and inside volumes defined in
this way the outer hull of the input mesh. In particular, we
define this reachability sensitive to surface orientation, i.e.
crossings of surface parts that are back-facing with respect
to the direction of crossing are ignored. This is important in
order to allow meshes to split into disconnected parts and
to permit the emergence of new “tunnels” through the mate-
rial. The defined boundary is then referred to as orientation-
sensitive outer hull. Figure 5 illustrates these concepts. Note
that they are inherently oblivious to internal voids, which is

Figure 5: Blue: Illustration of the outer hull of objects with
(self-)intersections. Surface normals are depicted by arrows.
Intersections are resolved by topological changes, effectively
merging the parts. Green: The orientation-sensitive outer
hull. The object splits where it is "thinner than zero".

familiar and at times intentional in the mentioned fields of
application [WTGT09, BPK05].

We proceed by first constructing the outer hull and then
modifying it into the orientation-sensitive outer hull.

6.2. Processing

In this application scenario, self-intersection in meshes have
to be handled. This necessitates another intersection test for
the octree construction. We employ a variation of Optimized
Spatial Hashing [THM∗03] that uses exact triangle-triangle
intersection tests. It proved to outperform all other advanced
self-intersection detection schemes we tried, e.g. those build-
ing upon spatial search structures [LAM01,MKE03] or those
making use of shape regularity [VMT94, Par04].

Within a critical cell we construct a BSP from all input
polygons. It is partitioned into several components by the in-
tersecting surface (cf. Figure 3), but at this local scale we are
not able to determine which components are outside accord-
ing to our notion. Hence, we cannot determine the desired
labeling of the leafs of the BSP. We bypass this by creating
local solutions for all alternatives and making a decision af-
ter composing them to global solutions. We apply the flood-
filling method presented in Chapter 4.2 in order to identify
the different components and extract their polygonal bound-
aries. We orient the polygons such that their normals point
to the interior of the respective component.

Before global connectivity is established, we have to addi-
tionally create an orientation-reversed copy of the clipped in-
put in the non-critical region. This accounts for the fact that
in the local solutions for the critical region each input surface
part is also represented twice – by the boundaries of the two
adjoining components, as depicted
in 2D in the opposite figure. By
then establishing connectivity, the
parts join up to form the bound-
aries of the components the global
volume is partitioned into by the
input mesh. One of these polygo-
nal boundaries is the outer hull. It
is one of the boundaries with maximal extent in any direction
and can be disambiguated by the orientation of its polygons
(outward normals).

In order to turn the outer hull into the orientation-sensitive

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

M. Campen & L. Kobbelt / Exact and Robust (Self-)Intersections for Polygonal Meshes

outer hull, all we have to do is superimpose those component
boundaries that have a coincidence with the outer hull where
the input is back-facing. Here superimposition simply means
adding with mutual cancellation, i.e. coincident but counter-
oriented parts are deleted (cf. Figure 6). In this way we effec-
tively account for components that would have been reached
in a global flood-filling process that ignores back-facing lim-
its. The fact that allows this operation to be performed very
easily is that of compatible component boundaries: by con-
struction, each polygon in one of the component boundaries
has a perfectly congruent and
coincident, but reversely ori-
ented counterpart in one of the
other components, as depicted in
2D here. Hence we can select a
polygon from the outer hull where the input mesh is back-
facing, add the component its counterpart belongs to to the
outer hull, and remove all introduced counterpart-pairs. Con-
nectivity information can simply be adapted during this pro-
cess. By doing this until no further component can be added,
we finally yield the orientation-sensitive outer hull. An ex-
ample of such a hull is depicted in Figure 1.

As already mentioned in the previous chapter, special care
has to be taken when the input consists of several indepen-
dent components. The following measures account for such
situations: First, components that lie completely in the in-
terior of another one (determined by ray-shooting as de-
scribed in Chapter 5) are discarded in the beginning. This
removes invisible interior surface parts and for instance han-
dles merge events between components that moved in a way
that one of them completely entered another one during one
step of simulation. Then we partition the set of remaining
components into equivalence classes w.r.t. the transitive hull
of relation R = {(a,b) | components a and b intersect} and
apply our described processing to each equivalence class
separately. The reason for this strategy is the fact that each
equivalence class has its own outer hull component, and its
detection out of the set of extracted components is easier
when we know that there is only one.

7. Experiments and results

We evaluate our method with respect to precision, robust-
ness and efficiency by performing suitable experiments on a
system with Intel Core i7 2.67GHz CPU and 6GB RAM.

In order to provide evidence for the exactness of our al-
gorithm and the involved conversions, we converted 25 dif-
ferent models with complexities ranging from 36 to 1M
faces into plane-based representation and then into BSP-
representation, followed by an extraction and conversion
back to a polygon mesh. Afterwards, we compared input to
output by calculating the Hausdorff-distance from the set of
input vertices to the set of output vertices. Note that in this
test setting theoretically no rounding should be involved in
the final computation of the vertices that correspond to input
vertices. In all cases the distance has indeed been zero.

+ ==>

Figure 6: Illustration of an input object (left) with self-
intersections and its outer hull (middle left). By superimpos-
ing those extracted components (middle right), that coincide
with the hull where the input is back-facing w.r.t. the hull, we
obtain the orientation-sensitive outer hull (right).

We check the robustness of our approach by processing
object constellations that are hard to handle in that they of-
ten lead to failures in tools for Boolean operations: for sev-
eral objects we shifted a copy as slightly as possible, i.e. in-
creased one coordinate component of each vertex to the next
representable value. We then computed the difference be-
tween these two objects and always obtained a closed man-
ifold output, free from topological error, whose distance to
the reference computed by CGAL from the same input was
sub-precision, i.e. zero when rounded to input precision.

Our prototypical implementation still leaves room for op-
timization. We used only single-stage filtered adaptive pred-
icates. Since a major part of the execution time of our al-
gorithm is spent with evaluating geometric predicates, ap-
plying multi-stage filtering [She97] would probably increase
performance. However, comparing the performance of our
method for Boolean operations with CGAL, the current best
practice in exact, robust Booleans, our prototype already
shows considerably higher efficiency in terms of time and
space. We compute Boolean operations on a series of large
meshes representing the same object with increasing poly-
gon count. We take the IPHIGENIE model depicted in Fig-
ure 7 and perform a union operation with a copy rotated by
varying angles around the center point. We use the same in-
put meshes for both algorithms and compute our final output
coordinates to full precision. Results are presented in Figure
7. We clearly see how our method benefits from the fact that
the region affected by intersections decreases as the angle
increases, due to our localization scheme. We also see that
the advantage over CGAL increases as the input complexity
grows: the runtime of CGAL’s implementation seems to be
nearly linear, while our method shows almost O(

√
n) behav-

ior as explained in Section 4.1. Of course, the octree con-
struction has higher complexity but this has no significant
influence at the lower input resolutions. Regarding the space
efficiency, we were unable to run tests with CGAL on input
with more than 200K faces, since the internal representation
already consumes about 5.3GB of main memory, while our
method required less than 300MB. All in all, our method
performed 2.5 to 13 times faster than CGAL, and judging
from extrapolation it would have been about 25 times if the
more complex inputs could have been processed.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

M. Campen & L. Kobbelt / Exact and Robust (Self-)Intersections for Polygonal Meshes

faces 25K 50K 100K 200K 400K 800K 1600K 3200K
cells 1.7K 2.4K 3.3K 4.7K 7.2K 8.6K 12.9K 16.5K

30◦ LBSP 6.9s 10.4s 14.0s 19.1s 27.4s 40.0s 59.2s 95.8s
CGAL 17.6s 33.5s 81.3s 113.9s – – – –
cells 0.9K 1.3K 1.8K 2.5K 3.4K 4.8K 7.2K 9.1K

60◦ LBSP 4.2s 5.8s 8.4s 11.8s 16.7s 25.5s 38.1s 65.3s
CGAL 16.9s 31.4s 60.5s 117.0s – – – –
cells 0.7K 1.0K 1.3K 1.8K 2.5K 3.4K 5.2K 6.5K

90◦ LBSP 3.3s 4.6s 6.4s 8.9s 13.6s 21.0s 32.8s 56.6s
CGAL 16.1s 31.1s 60.6s 114.0s – – – –

Figure 7: Results of the IPHIGENIE experiment for different rotation angles, executed by our localized BSP method (LBSP) and
CGAL. We operated on input complexities ranging from 25K to 3200K faces, where CGAL was unable to process input > 200K
due to memory requirements beyond 10GB. The number of critical cells shows O(

√
n) behavior as expected. Times are given for

the whole processing pipeline from standard polygon mesh input to polygon mesh output, including all required conversions.
On the right, a close-up of the 50K–90◦ instance after processing is depicted. The critical region is colored yellow.

In order to show the applicability of the outer hull concept
to mesh repair tasks, we computed the outer hull of objects
containing self-intersections, introduced during modeling by
bending parts of the model. Figure 8 shows two original
models and their repaired versions. These have been verified
to be completely free of self-intersections by pairwise trian-
gle intersection tests using exact arithmetic. The Hausdorff-
distance to the original meshes always was sub-precision,
i.e. zero when measurements are taken with the used in-
put precision. Processing took 1.2s for the COW model (6K
faces) and 1.9s for the WOMAN model (12K faces).

Regarding the application of our orientation-sensitive
outer hull approach to the problem of topology changes dur-
ing explicit front tracking, we performed some preliminary
tests that indicate suitability for this task even with finely
tesselated meshes. Since meshes that are free from self-
intersections do not need any processing by our method –
except for the determination of this fact – runtime is low
for such time-steps in the animation: about 100ms for a test

Figure 8: Models COW and WOMAN containing self-
intersections. This is visible in the magnified cross-sections
(cut curves highlighted yellow). By applying our outer hull
method, interior parts are removed and intersections re-
solved, as can be seen in the right and lower magnifications.

mesh with 15K faces, about 300ms for 50K faces, or about
1600ms for 400K faces. Only in the event of merges or splits
in the surface, topology has to be adapted. The whole mesh
post-processing for a step of animation then for instance
took 5.2s for a 400K mesh that contained nine small self-
intersections that had to be resolved, An in-depth examina-
tion of this field of application will be part of our future re-
search.

Degenerate contact situations that result in non-manifold
edges or vertices are handled by our scheme. In case a mani-
fold output mesh is desired, these can be split up into simple
edges and vertices – either topologically merging the solids
in contact or separating them.

8. Conclusion

We presented a novel scheme for the execution of topolog-
ical changes in polygonal meshes. Using plane-based rep-
resentations, BSP techniques and a localization scheme we
are able to perform operations like the evaluation of Boolean
expressions over polyhedra or the construction of outer hulls
of self-intersecting meshes exactly, robustly, and efficient in
time and space. We showed how our technique can be ap-
plied to explicit front-tracking of deformable material, eval-
uated the efficiency of our approach and demonstrated its
correctness and completeness on challenging examples.

In the area of solid modeling, we are currently explor-
ing the possibility of computing Minkowski sums of polyg-
onal objects robustly and exactly using the paradigm of
plane-based geometry processing in conjunction with BSP
techniques. While arithmetic operations cannot be restricted
to predicates in this context, the required constructions do
not cause increases in the precision requirements, which
promises to allow for an efficient processing.

Another valuable direction for future research is finding
a remedy for the inability of handling inner voids that cur-
rently restricts the utility of the outer hull method in partic-
ular areas of application.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

M. Campen & L. Kobbelt / Exact and Robust (Self-)Intersections for Polygonal Meshes

Acknowledgements The WOMAN model is courtesy of
MIRALab, University of Geneva, and the COW model has
been obtained from the AIM@SHAPE repository.

References
[ABA02] ANDÚJAR C., BRUNET P., AYALA D.: Topology-

reducing surface simplification using a discrete solid represen-
tation. ACM Trans. Graph. 21, 2 (2002), 88–105.

[ABJN85] AYALA D., BRUNET P., JUAN R., NAVAZO I.: Object
representation by means of nonminimal division quadtrees and
octrees. ACM Trans. Graph. 4, 1 (1985), 41–59.

[BB09] BROCHU T., BRIDSON R.: Robust topological operations
for dynamic explicit surfaces. SIAM Journal on Scientific Com-
puting 31, 4 (2009), 2472–2493.

[BF09] BERNSTEIN G., FUSSELL D.: Fast, exact, linear
booleans. Comput. Graph. Forum 28, 5 (2009), 1269–1278.

[BK05] BISCHOFF S., KOBBELT L.: Structure preserving cad
model repair. Comput. Graph. Forum 24, 3 (2005), 527–536.

[BLS03] BREDNO J., LEHMANN T. M., SPITZER K.: A gen-
eral discrete contour model in two, three, and four dimensions
for topology-adaptive multichannel segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 25, 5 (2003), 550–563.

[BPK05] BISCHOFF S., PAVIC D., KOBBELT L.: Automatic
restoration of polygon models. ACM Trans. Graph. 24, 4 (2005),
1332–1352.

[DFG∗06] DU J., FIX B., GLIMM J., JIA X., LI X., LI Y., WU
L.: A simple package for front tracking. J. Comput. Phys. 213, 2
(2006), 613–628.

[For97] FORTUNE S.: Polyhedral modelling with multiprecision
integer arithmetic. CAD 29, 2 (1997), 123–133.

[FP02] FRISKEN S. F., PERRY R. N.: Simple and efficient traver-
sal methods for quadtrees and octrees. Journal of Graphics Tools
7, 7 (2002), 2002.

[GGL∗95] GLIMM J., GROVE J. W., LI X. L., SHYUE K.-M.,
ZENG Y., ZHANG Q.: Three dimensional front tracking. SIAM
J. Sci. Comp 19 (1995), 703–727.

[GHH∗03] GRANADOS M., HACHENBERGER P., HERT S.,
KETTNER L., MEHLHORN K., SEEL M.: Boolean operations
on 3d selective nef complexes. In ESA (2003), pp. 654–666.

[Hav99] HAVRAN V.: A summary of octree ray traversal algo-
rithms. Ray Tracing News 12, 2 (Dec. 1999).

[Jia07] JIAO X.: Face offsetting: A unified approach for explicit
moving interfaces. J. Comput. Phys. 220, 2 (2007), 612–625.

[JLSW02] JU T., LOSASSO F., SCHAEFER S., WARREN J. D.:
Dual contouring of hermite data. In SIGGRAPH (2002), pp. 339–
346.

[KCS98] KOBBELT L., CAMPAGNA S., SEIDEL H.-P.: A general
framework for mesh decimation. In Graphics Interface (1998),
pp. 43–50.

[LAM01] LARSSON T., AKENINE-MÖLLER T.: Collision detec-
tion for continuously deforming bodies, 2001.

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A
high resolution 3d surface construction algorithm. In SIGGRAPH
(1987), pp. 163–169.

[LPY05] LI C., PION S., YAP C.-K.: Recent progress in exact
geometric computation. J. Log. Algebr. Program. 64, 1 (2005),
85–111.

[LT05] LACHAUD J.-O., TATON B.: Deformable model with a
complexity independent from image resolution. Computer Vision
and Image Understanding 99, 3 (2005), 453–475.

[LTH86] LAIDLAW D. H., TRUMBORE W. B., HUGHES J. F.:
Constructive solid geometry for polyhedral objects. SIGGRAPH
Comput. Graph. 20, 4 (1986), 161–170.

[MKE03] MEZGER J., KIMMERLE S., ETZMUSS O.: Hierar-
chical techniques in collision detection for cloth animation. In
WSCG (2003).

[Mül09] MÜLLER M.: Fast and robust tracking of fluid surfaces.
In SCA ’09: Proc. Symp. Comput. Animation (New York, NY,
USA, 2009), pp. 237–245.

[NAT90] NAYLOR B., AMANATIDES J., THIBAULT W.: Merging
bsp trees yields polyhedral set operations. In SIGGRAPH Com-
put. Graph. (New York, NY, USA, 1990), ACM, pp. 115–124.

[Nef78] NEF W.: Beiträge zur Theorie der Polyeder. Herbert
Lang Verlag, Bern, 1978.

[NT99] NOORUDDIN F. S., TURK G.: Simplification and repair
of polygonal models using volumetric techniques. Technical Re-
port GITGVU -99-37, Georgia Institute of Technology, 1999.

[Par04] PARK S. C.: Triangular mesh intersection. Vis. Comput.
20, 7 (2004), 448–456.

[PCK09] PAVIĆ D., CAMPEN M., KOBBELT L.: Hybrid
booleans. Computer Graphics Forum, to appear (2009).

[Pri91] PRIEST D. M.: Algorithms for arbitrary precision floating
point arithmetic. In Symp. Comput. Arithm. (1991), pp. 132–145.

[RV85] REQUICHA A. A. G., VOELCKER H. B.: Boolean oper-
ations in solid modeling: Boundary evaluation and merging algo-
rithms. In IEEE Proc. 73, 1 (1985), pp. 30–44.

[Set99] SETHIAN J. A.: Level Set Methods and Fast Marching
Methods. Cambridge University Press, June 1999.

[She97] SHEWCHUK J. R.: Adaptive Precision Floating-Point
Arithmetic and Fast Robust Geometric Predicates. Discrete &
Computational Geometry 18, 3 (Oct. 1997), 305–363.

[SI89] SUGIHARA K., IRI M.: A solid modelling system free
from topological inconsistency. J. Inf. Process.. 12, 4 (1989),
380–393.

[TBE∗01] TRYGGVASON G., BUNNER B., ESMAEELI A., JU-
RIC D., AL-RAWAHI N., TAUBER W., HAN J., NAS S., JAN
Y.-J.: A front-tracking method for the computations of multi-
phase flow. J. Comput. Phys. 169, 2 (2001), 708–759.

[Thi87] THIBAULT W. C.: Application of binary space partition-
ing trees to geometric modeling and ray-tracing. PhD thesis,
Georgia Institute of Technology, Atlanta, GA, USA, 1987.

[THM∗03] TESCHNER M., HEIDELBERGER B., MÜLLER M.,
POMERANTES D., GROSS M. H.: Optimized spatial hashing
for collision detection of deformable objects. In VMV (2003),
pp. 47–54.

[TN87] THIBAULT W. C., NAYLOR B. F.: Set operations on
polyhedra using binary space partitioning trees. SIGGRAPH
Comput. Graph. 21, 4 (1987), 153–162.

[VKSM04] VARADHAN G., KRISHNAN S., SRIRAM T. V. N.,
MANOCHA D.: Topology preserving surface extraction using
adaptive subdivision. In SGP (2004), pp. 241–250.

[VKZM06] VARADHAN G., KRISHNAN S., ZHANG L.,
MANOCHA D.: Reliable implicit surface polygonization using
visibility mapping. In Symp. Geom. Proc. (2006), pp. 211–221.

[VMT94] VOLINO P., MAGNENAT-THALMANN N.: Efficient
self-collision detection on smoothly discretized surface anima-
tions using geometrical shape regularity. Comput. Graph. Forum
13, 3 (1994), 155–166.

[WTGT09] WOJTAN C., THÜREY N., GROSS M., TURK G.:
Deforming meshes that split and merge. ACM Trans. Graph. 28,
3 (2009), 1–10.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

