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Abstract.  The question of representation of 3D geometry is of vital im-

portance when it comes to leveraging the recent advances in the eld of
machine learning for geometry processing tasks. For common unstuc-
tured surface meshes state-of-the-art methods rely on patch-basel or
mapping-based techniques that introduce resampling operations in order
to encode neighborhood information in a structured and regular ma nner.
We investigate whether such resampling can be avoided, and prqpose a
simple and direct encoding approach. It does not only increase processing
e ciency due to its simplicity { its direct nature also avoids a ny loss in
data delity. To evaluate the proposed method, we perform a numbe r of
experiments in the challenging domain of intrinsic, non-rigid shape cor-
respondence estimation. In comparisons to current methods we otserve
that our approach is able to achieve highly competitive result s.

Keywords: shape correspondence estimation, learning on graphs

1 Introduction

The representation of 3D geometry is a key issue in the context of macha
learning in general and deep learning in particular. A variety of approactes,
from point clouds over voxel sets to range images, have been investigat. When
the input geometry is in the common form of a surface mesh, conversiorotsuch
representations typically comes with losses in delity, accuracy,or conciseness.
Hence, techniques have been introduced to more or less directiske such discrete
surface data as input to machine learning methods. Examples are grapbased
[13[4] and patch-based approaches [IL#,3/18]. While graph-based techniqueby/re
on xed mesh connectivity structures, patch-based techniques pvide more ex-
ibility. However, they crucially rely on some form of (re)sampling of the input
mesh data, so as to achieve consistent, regular neighborhood encodinggmilar
to the regular pixel structures exploited for learning on image data.

In this paper we consider the question whether such resampling caibe
avoided, taking the mesh data as input even more directly. The ratiorale for
our interest is twofold: the avoidance of resampling would increase th e ciency
of inference (and perhaps training) and could possibly increase presion. The
increase in e ciency would be due to not having to perform the (typically non-
trivial) resampling (either as a preprocess or online). One could Ypothesize an



2 I. Lim, A. Dielen, M. Campen, L. Kobbelt

increase in precision based on the fact that resampling is, in generaccompa-
nied by some loss of data delity.

We propose a resampling and conversion free input encoding strateggiflocal
neighborhoods in manifold 3D surface meshes. In contrast to many prevus
approaches for learning on surface meshes, we then make use of RNNs and
fully-connected networks instead of CNNs, so as to be able to deal withhe
non-uniform, non-regular structure of the input. Though simple, this raw input
encoding is rich enough that our networks could, in theory, learn to emlate
common patch resampling operators based on it. Nevertheless, hand-crafy
such resampling operators and preprocessing the input accordinglgs previously
done, could of course be of benet in practice. Hence it is important to galuate
practical performance experimentally.

We apply and benchmark our technique in the context ofnon-rigid shape cor-
respondence estimation[29]. The computation of such point-to-point (or shape)
correspondences is of interest for a variety of downstream shape anaigsand
processing tasks (e.g. shape interpolation, texture transfer, ety. The inference
of these correspondences, however, is a challenging task and topic ofgming
investigation. Our experiments in this context reveal that the preprocessing ef-
forts can indeed be cut down signi cantly by our approach without sacri cing
precision. In certain scenarios, as hypothesized, precision can evée increased
relative to previous resampling-based techniques.

Contribution  In this work we propose and investigate a novel form of using
either fully-connected layers or LSTMs (Hochreiter and Schmidhiper [9]) for
point-to-point correspondence learning on manifold 3D meshes. By saiiizing
the local neighborhood of vertices we are able to encode relevant mfmation in
a straightforward manner and with very little preprocessing. We experimentally
analyze the practical behavior and nd that our approach achieves competi-
tive results and outperforms a number of current methods in the tag of shape
correspondence prediction.

2 Related Work

Several data- and model-driven approaches for nding correspondencdsetween
shapes have been proposed in previous works.

Functional Maps  Ovsjanikov et al. [23] approach the problem of nding point-
to-point correspondences by formulating a function correspondence rpblem.
They introduce functional maps as a compact representation that can be sed
for point-to-point maps. Various (model- and data-driven) improvements have
been suggested [14,24.,1.0.5.6]25]22[21,8]. Most closely related to our approach,
Litany et al. [I5] use deep metric learning to optimize input descrigors for
the functional maps framework. However, point-to-point correspondene infer-
ence in all cases requires the computation of a functional map for each paof
shapes. This possibly costly computation can be avoided with our approach
Once trained, our model can be applied directly for inference.
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Generalized CNNs for 3D Meshes Several data-driven methods that do
not rely on functional maps were proposed in recent years. Masci et al[[17]
generalize convolution operations in modern deep learning architectes to non-
Euclidean domains. To this end they de ne geodesic disks (patchgsround each
vertex. Based on a local polar coordinate system the patches can be resphad
with a xed number and xed pattern of samples (cf. Figure [La). This pr ede ned
sampling pattern allows to construct a convolution operation on these pathes by
computing weighted sums of features at sample positions. In order to tinsfer the
information (i.e. descriptors) available discretely at the vertices to the continuous
setting of the geodesic disks for the purpose of resampling, they areldmded
by means of appropriate kernels. Boscaini et al.[|3] propose to use anisotrimp
kernels in this context, while aligning the local coordinate sysems with the
principal curvature directions. Monti et al. [18] generalize the constuction of
these blending kernels to Gaussian Mixture Models, which avoisl the hand-
crafting of kernels in favor of learning them.

Ezuz et al. [4] and Maron et al. [16] both propose forms of global (instead of
local patch-wise) structured resampling of the surface, which carthen be used
as input to well-known CNN architectures used in computer vision.

Similar in spirit to our work is the method introduced by Kostriko v et al. [13].
They apply Graph Neural Networks (cf. [274[4120]) in the domain of 3D meshes.
A key di erence is that their network's layers see neighborhood nformation in
reduced blended form (via Laplace or Dirac operators) rather than nativey like
our approach.

In comparison to these approaches we require very little preprocefg, no
heavy online computation, and no resampling. Per-vertex descriptos are ex-
ploited directly rather than taking blended versions of them as input.

3 Resampling-free Neighborhood Encoding

We assume that the input domain is represented as a manifold triangle nsh
M . Some form of input data (e.g. positions, normals, or geometry descriptods
is speci ed or can be computed at the vertices oM . We denote the information
(feature) at a vertex v by f(v). As in previous work [17[3[18], for the task of
correspondence estimation, we would like to collect this informationf from a
local neighborhood around a vertexa. As mentioned above, we intend to encode
this relevant information in a very direct manner, essentially by a notion of
serialization of the per-vertex features f in local neighborhoodswithout any
alterations.

3.1 Spiral Operator

To this end we make the observation that, given a center vertex, the gsrrounding
vertices can quite naturally be enumerated by intuitively following a spiral, as
illustrated in Figure [lb] The only degrees of freedom are the orientation(clock-
wise or counter-clockwise) and the choice of 1-ring vertex markingtte spiral's
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@) (b)

Fig. 1. The black graph represents a patch of a triangle mesh. (a) For generalized CNNs

.....

the magenta polar grid in order to provide a xed number and patte rn of samples for
a convolution kernel. (b) Instead, we enumerate the neighborhood vertices of a center
vertex a by following a spiral pattern (magenta). For a given feature f( ) we encode
the local neighborhood information feeding [f( a); f(b); f(c); f(d); f(e); f(f ); f(g);:::] into
a LSTM Cell.

starting direction. We x the orientation to clockwise here. The choice of starting
direction is arbitrary, and a di erent sequence of vertices will be produced by the
spiral operator depending on this choice. This rotational ambiguity is a @mmon
issue in this context, and has been dealt with, for instance, by max-poling over
multiple choices [17], or by making the choice based on additional, e.g. &n-

sic, information [3]. We avoid this by instead making a random choice in ach
iteration during training, enabling the network to learn to be robust against this
ambiguity, assuming a su cient number of parameters in the network.

Given a starting direction (i.e. a chosen 1-ring vertex), the spial operator pro-
duces a sequence enumerating the center vertex, followed byehl-ring vertices,
followed by the 2-ring vertices, and so forth. Thus, for a givenk, it is possible
to trace the spiral until we have enumerated all vertices up to and ncluding the
k-ring. In Figure [[B] this is illustrated for the case k = 2, where the sequence
reads p;b;c;d;e;f;g;::]. Alternatively, for a given N, we can of course trace
until we have enumerated exactly N vertices, thereby producing xed length
sequences { in contrast to the variable length sequences up to ring.

While the de nition and practical enumeration of a spiral's vertices is really
simple locally, some care must be taken to support the general settm in par-
ticular with large k or large N (when k-rings are not necessarily simple loops
anymore) or on meshes with boundary (wherek-rings can be partial, maybe
consisting of multiple components). The following concise de nifon of the spiral
operator handles also such cases.
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Let k-ring and k-disk be de ned as follows:

0-ring(v) = fvg;
(k+21)-ring( v) = N (k-ring(Vv)) nk-disk(v);
k-disk(v) = [ i=0 .k i-ring(Vv);

where N (V) is the set of all vertices adjacent to any vertex in setV.
The spiral(v; k) is de ned simply as the concatenation of theordered rings:

spiral(v; k) = (0-ring( v) ::: k-ring(v)):

The xed-length spiral( v; N) is obtained by truncation to a total of N vertices.

The required order < on the vertices of ak-ring is de ned as follows: The 1-
ring vertices are ordered clockwise, starting at a random position. ie ordering
of the (k+1)-ring vertices is induced by their k-ring neighbors in the sense that
vertices v; and v, in the (k+1)-ring being adjacent to a common vertexv in
the k-ring are ordered clockwise aroundv , while vertices v; and v, having no
common k-ring neighbor are sorted in the same order as (any of) theik-ring
neighbors.

3.2 Learning

With the (either variable length or xed length) vertex sequence [a; b;c; d;e;f;
g;:::] produced for a given center vertex, one easily serializes the rgiborhood
features as the sequence @j;f(b); f(c); f(d); f(e); f(f );f(q);:::].

For the purpose of correspondence estimation our goal is to learn a compact
high-level representation of these sequences. This can be done irsaaightfor-
ward and intuitive way using recurrent neural networks. More spec cally, we
feed our vertex sequences into an LSTM cell as proposed by Hochreitemd
Schmidhuber [9] and use the last cell output as representation. Thisepresenta-
tion is thus computed using the following equations:

fe= (W [Xe;hy 1]+ br);
it = (Wi [xg;he 1]+ b);

o0 = (Wo [Xt;he 1]+ k),
¢ ="f¢ ¢ 1+i tanh(W¢ [X¢; he 1]+ b);
he = o0 tanh(c);

where the learnable parameters are the matrice®Vs ; Wi ; Wy; W, with their re-
spective biasesy ;b ; ;. [X¢;hy 1] is the concatenation of the input x; (e.g.
f(a)) and the previous hidden state h; 1, while ¢; and h; are the current cell-
and hidden-state respectively. We denote the Hadamard product as .

This generation of a representation of the local neighborhood of a vertexia
a LSTM cell is, in an abstract sense, comparable to the generalized convel
tion operation of previous patch-based approaches. However, the resampdj of
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neighborhoods and computation of blended features f( ) for each sample ¢, )
(see Figure) is avoided by our approach. Here and are geodesic polar
coordinates of some local coordinate system located at each center vext f(r; )
is then computed based on a weighted combination of f at nearby verticese(g.
f(r; )= wcf(c)+ wyf(d)+ ). Depending on the nature of f this linear blending
can be lossy.

For the case of a xed length serialization, the use of an RNN supporting
variable length input is not necessary. A fully-connected layer (ombined with
some non-linearity) can be used instead. Naturally, we apply these nghborhood
encoding operations repeatedly in multiple layers in a neural nework to facilitate
the mapping of input features to a higher level feature representdbn. This is
detailed in the following section.

Tessellation Dependence  Our simple method of encoding the neighborhood
obviously is not independent of the tessellation of the input. By augmating the
features f with metric information (i.e. by appending length and angleinforma-
tion), we can mitigate this and essentially enable the network to posdily learn
to be independent. In Sectior] 4.1 we investigate the e ects of this

Concretely, we concatenate to the input feature f€) the distance of the cur-
rent vertex c to the center vertex a as well as the angle at between the previous
vertex b and c.

3.3 Architecture Details

To evaluate and compare our proposed methods (with variable or xed length
sequences) in the context of shape correspondence estimation, we stmct our
network architectures in a manner similar to the GCNN3 model proposedby
Masci et al. [I7]. We replace the convolution layers in GCNN3 by the ones
presented above, as detailed below. For the sake of comparability, wase the
SHOT descriptor proposed by Salti et al. [26] with 544 dimensions and defatl
parameter settings computed at each vertex as input, following[]3,18].

The original GCNN3 [17] network is constructed as FC16 + GC32 + GC64
+ GC128 + FC256 + FC6890. FCx refers to a fully connected layer with output
size x, which is applied to each vertex separately. GQ is the geodesic con-
volution operation followed by angular max-pooling, producing x-dimensional
feature vectors for every vertex.

LSTM-NET  Our network (LSTM-NET) for sequences with varying length

replaces the GC layers and is constructed as FC16 + LSTM150 + LSTM200
+ LSTM250 + FC256 + FC6890. LSTM x is the application of a LSTM cell to

a sequence consisting of the input vertex and its neighborhood. Ithis manner

we compute a new feature vector with dimensionalityx (encoding neighborhood
information) for every vertex, similar to a convolution operation.
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Table 1. Number of parameters used in the di erent network architectures. F CS-NET
(20) refers to FCS-NET applied to sequences with length 20, while GCNN3 is our
implementation of GCNN3 [L7] with the SHOT descriptor

Network Number of Parameters
GCNN3 (SHOT) 2,672,634
LSTM-NET 2,675,706
FCS-NET (20) 2,763,356

FCS-NET For xed-length sequences we make use of a network (FCS-NET)
constructed as FC16 + FCS100 + FCS150 + FCS200 + FC256 + FC6890.
FCSx refers to a fully-connected layer, which takes the concatenatedehtures

of a sequence as input and produces a&-dimensional output for every vertex,

analogously to the LSTMx operation above.

We apply ReLU [19] to all layer outputs except for the output of the nal
layer to which we apply softmax. As regularization we apply dropout [28] with
p = 0:3 after FC16 and FC256. For fair comparison, the layers of our LSTM-NET
and FCS-NET were chosen such that the total number of learnable parameter
is roughly equal to that of GCNN3 (cf. Table [1). Our networks are implemented
with TensorFlow [1].

4 Experiments

For our experiments we used the FAUST dataset (consisting of 100 shape{2].
This allows for comparisons to related previous methods, which haveommonly
been evaluated on this dataset. Following common procedure, for traimg we
used the rst 80 shapes (10 of which were used for validation). All expement
results were computed on the last 20 shapes (our test set). We optimed all
networks with Adam [12] (Ir =0:001, ; =0:9, , =0:999), where each batch
consisted of the vertices of one mesh.

In order to evaluate the performance of our LSTM-NET we restrict ourself
to sequences of xed length as input (even though it would be capable ofehling
with variable length input). This is because the mesh connectiviy is the same
over all meshes of the dataset. For varying length sequences (e.g. tHe and
2-ring of each vertex) the network would potentially be able to learn the valence
distribution and use connectivity information as an (unfair) predict ion help.

Following Kim et al. [L1] we compute point-to-point correspondences angblot
the percentage of correct correspondences found within given geodesadii. For
the evaluation no symmetry information is taken into account. We compareto
the results from [17,3,18]. In addition we also implemented GCNN3 (usinghe
SHOT instead of the GEOVEC descriptor as input) after Masci et al. [14] and
evaluated the method in our setting. We used the parameters and loss pposed
in the original paper. As shown in Figure[2 (a) our method outperforms curent
patch-based approaches with both LSTM-NET and FCS-NET for a sequence
length of 30. Note that, by contrast, the average number of interpolated verices
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in a patch for GCNN3 is 80. Furthermore, we do not perform any post-processag
or re nement on the network predictions. An evaluation of the e ect of di er-
ent sequence lengths is visualized in FigurE]3 (a-b). Even with sirter sequence
lengths (15) our method achieves competitive results. Qualitative esults are
visualized in Figure[d. We show the geodesic distance to the ground wth tar-
get vertices on four shapes from the test set. Correspondence errors ialative
geodesic distance> 0:2 are clamped for an informative color coding.

4.1 Tessellation Dependence

An important, but often overlooked detail is the fact that the shapes in the
FAUST dataset are meshed compatibly, i.e. the mesh connectivity isdentical
across shapes, and identical vertices are at corresponding points. Uske a cor-
respondence estimation method is truly tessellation-oblivious, liis naturally has
the potential to incur a bene cial bias in this arti cal benchmark, as in any realis-
tic correspondence estimation application scenario, the tessellatiowill of course
be incompatible. We thus repeat our experiments with a remeshedersion of the
FAUST dataset (see Figure[4), where each shape was remeshed individiyahnd
incompatibly.

Quantitative results are shown in Figure@ (b). Here (++) denotes the addi-
tional relative information that we concatenate to the SHOT descriptor vectors.

Remeshed FAUST

—— LSTM-NET (N=30,
FCS-NET (N=30)
—— GCNN3 (SHOT)
- MoNet (RAW)

—— LSTM-NET (N=30)
FCS-NET (N=30)
LSTM-NET (N=30++

40

% correct corresponde
% correct corresponde

20 ACNN (REFINED) 20 —— FCS-NET (N=30++)
- GCNN3 (GEOVEC —— GCNN3 (SHOT)
0 0
0.000 0.025 0.050 0.075 0.10 0.000 0.025 0.050 0.075 0.10
geodesic radius geodesic radius
CY (b)

Fig. 2. Here the percentage of correct point-to-point correspondence predctions in-

cluded in varying geodesic radii is shown. (a) shows a comparism of our approaches
(FCS-NET, LSTM-NET) on sequences of length N=30 to current app roaches. Dashed
lines refer to results reported in previous work. For GCNN3 [L7] we compare against
the original version that uses the GEOVEC descriptor (dashed) a s well as our im-
plementation of GCNN3 (black), which takes the more advanced SHOT descriptor as
input. ACNN [3]Ishows the results after a correspondence map re nement step. For the

sake of fair comparison we show the raw (w/o re nement) performance o f MoNet [L8],

as we do not perform any re nement for the output of FCS- and LSTM-NE T either.

(b) visualizes the results on the remeshed FAUST dataset (cf. Sec @) As expected,
the addition of relative angles and distances (++) is bene ci al.
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0 0
0.000 0.025 0.050 0.075 0.10 0.000 0.025 0.050 0.075 0.10
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w w
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) —— LSTM-NET (N=15 © LSTM-NET (N=20++
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S S
—— LSTM-NET (N=30 —— GCNN3 (SHOT)
0 0
0.000 0.025 0.050 0.075 0.10 0.000 0.025 0.050 0.075 0.10
geodesic radius geodesic radius

Fig. 3. Here the percentage of correct point-to-point correspondence predctions in-

cluded in varying geodesic radii is shown. (a-b) show the e ect of di erent sequence

lengths (N=15,20,30) for the FAUST dataset. Even with relativ ely short sequences
(15) we achieve competitive results. (c-d) visualize the results on the remeshed FAUST

dataset. For comparison we also show the performance of the GCNN3 [17] network

with the SHOT descriptor. (++) denotes the usage of additional metric information.

On this more challenging dataset we likewise achieve competitive sailts. Es-
pecially the additional information (++) enables our networks to encode less
tessellation-dependent representations of neighborhoods for bett performance.
The e ect of di erent sequence lengths is shown for this dataset inFigure |§ (c-
d). For the sake of comparison to the performance of FCS-NET we also restt
LSTM-NET to sequences of xed length. See Figurd | for qualitative resits.

Furthermore, we test the robustness of our network predictions to andom
starting points after the center vertex in our sequences (random raations of
the spiral). To this end we perform 100 predictions with di erent r andom rota-
tions on the remeshed FAUST dataset with both FCS-NET and LSTM-NET. As
shown in Figure[§ our networks are highly robust to these random orientaibns,
such that the curves of separate predictions are not discernible.
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Fig. 4. Left: triangulation of a shape from the original FAUST dataset. Ri ght: inde-
pendently remeshed version.

105 100 FCS-NET predictions on Remesl 105 100 LSTM-NET predictions on Remes

80 80

60 60
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0.000 0.025 0.050 0.075 0.10 0.000 0.025 0.050 0.075 0.10
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Fig.5. (a-b) show the robustness of our approach to random rotations of the spi-
rals. We perform 100 inference runs on the test set of the remeshed FAUS dataset
with varying random rotations. The 100 di erent resulting curves p lotted here are not
distinguishable due to the robustness of our trained networks.

5 Conclusion

In this paper we presented a simple resampling free input encanlg strategy for
local neighborhoods in 3D surface meshes. Previous approaches rely annis of
resampling of input features in neighborhood patches, which incws additional
computational and implementational costs and can have negative e ects on iput
data delity. Our experiments show that our approach, despite its simple and
e cient nature, is able to achieve competitive results for the challenging task of
shape correspondence estimation.

Limitations and Future Work Although the introduction of metric infor-

mation aims to make our method less sensitive to tessellation, it is evertheless
a ected by it; this, however, is true to some extent in any practical setting
for previous patch-based approaches as well. The design of truly tesaion-
oblivious encoding strategies is a relevant challenge for future wotkas it would
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} t LSTM-NET (30)
} t LSTM-NET (15)
GCNN3 (GEOVEC) 1 t GCNN3 (SHOT)

Fig. 6. Geodesic error for 4 shapes from the test set of the FAUST dataset.

FCS-NET (30)

vy

FCS-NET (15)

L)

relieve the training process from having tolearn tessellation independence, as
required for optimal performance.

Furthermore, high resolution meshes require longer sequences taa@de rel-
evant neighborhood information. In the case of FCS-NET this also means an
increase in the number of parameters required to learn, which can &l to mem-
ory issues. An interesting avenue for future work thus is the inestigation of
sub-sampled (but not resampled) serialization.

A related issue is that the training of RNNs tends to be slower than that
of CNNs. A possible solution to this problem could be the application of 1D
convolutions instead of LSTM cells or fully connected layers. An inveigation
into feature learning, given only raw input data (e.g. lengths, anglesor positions
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0.0 0.2
LSTM-NET (30++) LSTM-NET (30)
LSTM-NET (15++) LSTM-NET (15)
GCNN3 (SHOT) FCS-NET (30++)

Fig. 7. Geodesic error for 4 shapes from the test set of the remeshed FAUST d#aset.

of mesh elements) instead of preprocessed information like the SHOdescriptor
will also be of interest.
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