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Abstract

We propose a hovel method to synthesize geometric models from a given class of context-aware structured shapes such as build-
ings and other man-made objects. The central idea is to leverage powerful machine learning methods from the area of natural
language processing for this task. To this end, we propose a technique that maps shapes to strings and vice versa, through an
intermediate shape graph representation. We then convert procedurally generated shape repositories into text databases that,
in turn, can be used to train a variational autoencoder. The autoencoder enables higher level shape manipulation and synthesis
like, for example, interpolation and sampling via its continuous latent space. We provide project code and pre-trained models.

Categories and Subject Descriptgscording to ACM CCS) 1.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

. input shape shape graph string encodings
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Automatlc_3D model synthes_ls is one of the most challenging A J AG(DCHDCDBDCDCDO)DC
problems in computer graphics. The standard approach to cre- y — B(DCDCDAOCD)DCDCDCO
ating virtual 3D shapes involves the use of complex modeling B(DCDCDCO0)DCDCDAOCD

software by skilled artists and can be time consuming and ex- variant variant invalid variant

pensive. Recent data-driven methods for shape synthesis suct

as LXC 17,SSK 17] address this problem by training neural net-

works to perform tasks like shape assembly and interpolation. Sim-

ilar to how humans approach 3D modeling, these methods consider

shapes as being composed out of building blocks. An important

limitation of previous approaches, is the limited structural com- Figure 1: A simple shape, its shape graph, string representations of
plexity of the produced models. This problem can be attributed to the graph, and shape variants. Both mappings from graph topology
the types of models available in shape repositories, but the moreto strings, and back to geometric shapes are not uniquely de ned.
signi cant hurdle is the inability of neural networks to work on ir-

regularly structured input. In this work we propose a combination

of a model-based and a data-driven method that addresses both cre-

ating large number of structured shapes of arbitrary complexity and ar? t:;erarc:_lcal_ and F?JCTI seqll_Jéance ﬁf _?_?_phcanons can ?e t:jarml-
representing the topology of structure graphs via strings. nated resutting in a gioba'ly valld resull. Ting grammar rufes de-
scribe only local con gurations without termination or correctness

In order to address the problem of creating structural variations guarantees. For example, the last shape in Figaontains an error
in a principled way, we consider shapes that can be assembledthat cannot be resolved by modifying only the pieces of the model
from building blocks according to an initially unknowiting shape that cause the invalid intersection. Hence, with growing amount of
grammar: a set of rules describing how to assemble the elementarycomponents, it quickly becomes impossible for probabilistic pro-
pieces locally. To this end, we use as an input a small number of cedural modeling methods to generate shapes without violating the
shapes segmented into rigid, exchangeable parts (building blocks).tiling grammar. This makes the problem very dif cult, but also in-
These de ne the set of plausible shape variants: each local con gu- teresting, since the resulting shapes can contain cycles and regular
ration of components is considered valid only if the same or a very grid patterns that appear very often in man made objects.

similar con guration also occurred in the input models. . . .
9 P In this work we tackle the problem of 3D modeling using ma-

However, unlike context-free shape grammars, the grammar as-chine learning methods for natural language processing: a do-
sembly rules here are not suf cient to derive a recipe for creating main that also deals with non-context free constructions. To this
shape variants. The difference is that context-free production rulesend, we adapt the simpli ed molecular-input line-entry system
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(SMILES) [Wei8g for encoding the topology of graphs represent- models in an existing shape database and then use them to com-

ing shapes constructed out of building blocks (see Figwrd&his pose new shapes. Subsequent works expand on various aspects of

string conversion method enables the application of recurrent neu-the method, e.g., using 2D sketcheE(8] for shape retrieval. Fur-

ral networks for learning the structure of geometric models. ther part-based modeling approaches have been recently surveyed
in [MWZ 13).

We demonstrate that it is possible to train a variational autoen-
coder (VAE) KW13] on strings representing the structure of the Several recent related works on procedural modelfifig.[ 11,
randomly generated 3D models similar BMV 15GDH 16] and TYK 12 RMGH15 RJT19 consider hierarchical segmentations
generate geometric shapes constructed out of rigid building blocks. and create further shapes usountext-freeshape grammars. These
The variational autoencoder is used to map vectors representingworks address the problem of generating desirable variants via
shapes to a continuous latent space and decode points in latentandom applications of grammar rules and provide better means
space to shape representations. This facilitates high level synthe-for user control compared to our method. In contrast, the non-
sis operation such as interpolation and sampling of discrete shapescontext-free shape grammars we consider here have higher expres-

Synthesizing geometric shapes from a given graph topology pro- Sivé power and are easier to compute automatically. Our method
duced in the previous step is also very hard even if there is a uniqued0€S not require the shape grammar to be provided as input, which
way to attach pairs of pieces togeth&SK 17], which is not the is bene cial for users without 3D modeling skills.
case here. We address the problem by reducing it to a classi cation  oyr method is closely related to inverse procedural model-
task and train a neural network to estimate how the parts (or graphing techniques for generating variations from a single example
nodes) are positioned relative to each other in space. like the works by Bokeloh et al.gWwS1Q BWKS1]] and Liu

Since existing shape collections usually consist of samples with et al. [VW 15]. These methods consider shape decompositions
small or no structural variations, we rst have to address the prob- into building blocks that can be assembled into variants. The seg-
lem of ef ciently creating large sets of structured shapes. We ex- mentations are either computed via symmetry detec@BW$1Q
tend and automate the procedural modelling method based on parBWKSL11, or given as inputlVW 15].

tial graph symmetriesfWS1Q LVW 15| and use it for creating Similar to Liu et al. [VW 15] we use partial graph symmetries
sets of samples suf ciently large to enable training machine learn- . generate random variations by splitting and merging example
ing models. As a result, we present a fully automatic shape syn- part compositions. However, as detailed in Sectiome propose
thesis framework that can generate large collections of shapes with;, 5iternative sampling algorithm for faster, automatic and more
signi cant structural variations using just one or two example mod- b o sampling of large amounts of shape variations.

els as input.

This paper contains three important contributions (see Figlure  Data-Driven Shape ProcessingXu et al. [XKHK17] survey re-

d cent data-driven methods for shape processing including part based
modeling FKS 04, KJS07, sketch-based modelingF\WX 13,

XXM 13] and shape editingq{ZZ 11,ZCOM13. Similar to us,

these methods attempt to simplify 3D modeling by leveraging exist-
ing data. The differences are that we generate the example datasets
from a single or several examples.

A model-based, automatic method for generating structure
shape variations given just one or a few examples.
Adapting a data-driven method from natural language process-
ing, for procedural modeling of 3D geometry.
A data-driven method for instantiation of shape graph topologies
in R3 via edge classi cation.

Recently, Nash and Williams$\JW17] also proposed the use of
a variational autoencoder (VAE) for shape synthesis. Their work
however differs signi cantly from our method since they train a

5 .
Ts'hl lS'hl VAE on a set of shapes with the same structure. Other related deep
shape graph—2 grap structure grap generative models for structure variations consider tr&] 17]
variations variations . . .
6 or graph BSK 17] representations of comparably simpler objects
3 l like chairs and vehicles. The main disadvantage of these related

methods compared to ours is the constrained structural complexity
of the generated shapes which limits them to creating style varia-

Figure 2: Overview: We convert 3D models into graphs and pro- tions of the tra_lining example_s. On _the other hand, our method en-
cedurally create structural variations. These are converted to text 2Pes synthesis of shapes with arbitrary topology thanks to vector-
databases and used to train a variational autoencoder (VAE). 1Zing shape graphs using sequences.

Finally, the training and additional strings representing graph

topologies are instantiated back into 3D models. The number next 3. Tiling Grammars and Structure Graphs

to each arrow indicates the corresponding section in the paper. .
In the absence of prede ned rules for procedural modeling, we have

to nd a way to characterize the space of valid shape variations. A

sound way to address this challenge is to use the input models as
2. Related Work examples for a set of valid assembly rules and only use these for
Part-based Modeling Funkhouser et alHKS 04] propose a data- shape synthesis. In other words, as a grammar we use the subset of
driven shape synthesis method in which a user can cut out parts ofthe assembly rules already observed in the input models.
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S S random subgraph i%; matching cuts irG; random variation

Figure 3: Graph-based shape sampling. The input modegj§Sare converted into shape graphg &;. New shape variations are created
automatically via random subgraph sampling and subgraph matching.

More speci cally, each part of a certain type in the output shape are recombined into a new shape. The main dif culty is to ef -
has to have a matching number and types of neighbors. Pieces areiently discover compatible sub-graphs and avoid duplicates. Liu
considered as neighbors if and only if their surfaces intersect. This et al. LVW 15] propose to enumerate all possible graph opera-
assumption is quite general and does not impose restrictions on thetions in O(n3) worst case complexity an@(nz) (quadratic in the
shape of the parts or their intersections. number of graph nodes) expected complexity. Instead of exhaus-

For example, the grammar rules derived from the models in Fig- tively searching for all possible operations we sampleandom

ure 3 allow each of the green, purple, cyan building blocks to only subgraphs in parr]alleldandee_minear in the n:mper_ of avlaillable f
attach to brown pieces and to have exactly one (green and cyan) o[PrOCessars (or threads). Doing so, we spend signi cantly less ef-

three (purple) neighbors. The brown building blocks have exactly for;) samﬁlin% t:e _shapehvariantg created_ b); merg:;liqg eﬁa}ctly two
two neighbors and can attach to pieces of every type. subgraphs of the input s apes. By recursively applying this proce-
dure on newly created variations we can sample shapes made out

We represent the structure of each shape via a undirsbisae of more than two subgraphs from the input.

graph The nodes of the graph correspond to parts. Every pair of

connected pieces is represented with an edge between their (:orre-Subgraloh Matching Each subgraph sampigrom the rst shape

;snpondlng nodes. We transfer the part labels to the graph by assgn-grathL is matched against the the second shape g@phwe
g atypeto each graph node. The shape graph abstracts away th.esearch for a set of nodes @, corresponding to the nodes @y

geobnlwetry mform:tlon arl1_d can Se uged tohreduci_the shape synthes'éonnected via boundary edges fBoth the node types as well
problem to graph sampling and subgraph matching. asall pairwise distances between the centroids of the respective
We extract these grammar rules regarding graph topology (num- parts have to match. The latter is a necessary condition for the exis-
ber and types of neighbors for a given node type) from the shape tence of a rigid transformatioh that attaches (docks) the geometry
graphs of the input models and use them to detect variations with represented bg to S, without violating the grammar rules at the
invalid graphs. The same set of rules can be used to check for selfboundary BWS1Q. We randomize our search and terminate after
intersecting assemblies, by verifying the shape graph from the ge- nding the rst set of corresponding boundary nodes@a in or-
ometric shape after creating it. Later on, the example models areder to speed up the sampling process in the presence of multiple
used to derive a set of allowed approximate positions and orienta- matches.
tions of connected pairs of pieces of certain types. Therefore, the
ef ciency of our shape synthesis approach depends on the ability 10 pocking Transformation Estimation Each subgraph with match-
quickly compute the shape graph of input models of arbitrary com- j4 houndary needs to be transformed in order to attach $to
plexity. We solve this using collision detection and by assuming Aligning the centroids of the boundary pieces fr@p to their
that a pair of parts is connected if and only if their corresponding matching counterparts i8, can be reduced to nding a transfor-

triangle meshes intersect each other. mation that minimizes the distances between the two sets of points
in the least square sense. The problem can be reduced to comput-
4. Graph-Based Shape Sampling ing an SVD (singular value decomposition) of a 3 covariance

Assuming a pair of input model§;; S, our shape augmentation matrix (see the supplemental notes $#\D7] for a detailed proof).

method consists of the following steps (also see Figuré/e com-

pute graphsG;; G, for each shape using collision detection. We Validation After creating a variation by replacing a subgraph of
randomly sample subgraphs in the rst shg) and check ifa G2 with a subgraph of5; we have to verify that the new shape
subgraph with matching boundary exists in the second st@Bfe does not violate the grammar rules. This can happen, for example,
We merge each matching pairs of subgraphs and check the resultingf Some of the nodes in the interiors of the attached subgraphs inter-
model against the grammar rules extracted from the shape graphdere. Note that we need to test the geometric shape of the variant.
G1; G». We output valid shape variations with different node type The generated graph topology is always correct by construction:

histograms to avoid re-discovering the same shape multiple times. We only replace nodes on the boundary of the two subgraphs with
nodes of the same type. In order to guarantee that the newly cre-

Subgraph Sampling In essence, our shape generation approach ated shape is geometrically feasible, we generate it and compute
splits each of the input models into two or more pieces that its shape graph. Both interfering and misaligned parts will pro-
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shape shape graph string representations variational autoencoder
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Figure 4: Example shape vectorization using SMILES strings. All cycles in the shape graph are broken by removing a random edge (lime
green). The remaining spanning tree (gray) is encoded in a string using letters for nodes and brackets to represent branching. The cycle
edges are reintroduced by adding a number next to their adjacent nodes in the string. The resulting strings are used to train a variational
autoencoder. We train on multiple shape variants composed out of the same building blocks.

duce node con gurations that are not allowed by the tiling grammar as they appear in a spanning tree of the molecule graph. The conver-
causing the shape to be discarded as invalid. sion algorithm is general enough to be applied to arbitrary graphs,

. . . . and we employ an analogous conversion method.
We avoid duplicating output models by conservatively discard- pioy 9

ing shapes with identical node type histograms. Removing dupli-  We assign a letter to each node type in the shape graph and com-
cates is important if the input shapes have identical subgraphs, inpute a string by depth- rst traversal of the graph. Multiple subtrees
which case multiple subgraph replacement operations yield copieswith the same root are enclosed by brackets (except the last subtree
of the original models. at each node). All remaining (cycle) edges in the graph are recorded
via number suf xes at both end-nodes. The resulting strings are

then trivially converted to one-hot vectors that can be used as input
5. Variational Autoencoder for Tiling Grammars to a sequence autoencoder (Figdye

The goal of the above shape sampling method is to automatically  Since we are interested in shape synthesis and do not have ac-
generate large amounts of models with structural variations, and cess to large bodies of training data, we prefer to compute multiple
use them as training sets for machine learning. Particularly in- strings for each shape and use all of them for learning. Intuitively,
teresting is the sequence modeling approach useGDH 16, we try to train the autoencoder to distinguish strings that can rep-
BVV 15|, which is based on sampling from a continuous structure resent valid shapes from those that cannot, and accept the slight
representation obtained from the latent space of a variational au-drawback of representing the same valid example multiple times.
toencoder (VAE). In this work we generalize the method and apply After training, the decoding part of the neural network is not able

it for synthesis of arbitrary geometric shapes constructed accordingto covert all points in latent space into strings representing valid
to a tiling shape grammar. shapes. Therefore, we have to verify decoded samples against the
tiling grammar and discard invalid ones. This can be performed by
the same procedure used to verify shape graphs of randomly cre-
ated variations.

The variational autoencodeKW13] is a generative probabilis-
tic model, which implicitly describes the joint probability distribu-
tion over the dataset and corresponding latent varigiles). An
encoder network is used to approximafejx) with q(zjx) by map-
ping data samples to distributions in latent space (typically gaus-
sian). A decoder network mode§xjz) by mapping samples from
g in latent space to an output distribution (typically consisting of Even though large regions of points in latent space do not decode
categorical distributions). Here, the input dataset is a collection of to valid strings (according to the grammar), it is possible to create
sequences describing the shape graph topology of a set of geometshape variations by sampling and decoding random latent points.
ric models (see Figurd). After training the network with a rep-  Qur hypothesis is that valid shapes are mapped to a manifold by the
resentative set of sample values one can use the decoding part oRncoding half of the autoencoder. If true, we are likely to nd latent
pOintS of the latent space not present in the training set. This facili- points Corresponding to valid Strings in the neighborhoods of the
tates operations like sampling, or interpolation of geometric shapesimages of training samples. We experimented with three sampling
(molecule formulae or sentences BPH 16,BVV 19). strategies and observed results that support this assumption.

5.2. Latent Space Sampling

Point Perturbations We sample the neighborhood around a latent
point py corresponding to a valid training example with strisg

In order to use a set of shapes as an input for a variational au-We add a random offset vectoy to py and decode the resulting
toencoder we need to rst convert them to vectors. Since we are pointpr := py+ ri. Let pr decode to a string.. If § = s, ors is
interested in learning the structure of the shape, i.e., how to con- not valid according to the grammar rules, we re-sangplasing a
struct a model out of building blocks, we want to convert the shape new offset vector, with increased magnitude in each dimension.
graph to a vector. SMILES string%i8g are a standard method  We repeat this procedure until we reach a maximum magnitude (we
for molecule representation, which is based on enumerating nodesused 0.25) or nd a valid string not equal to the knogn

5.1. Shape Graph Vectorization
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Linear Interpolation We interpolate points on the line segment the shortest path in the above graph. The resulting operation is more
between the images of pairs of training samples. We sample pointsef cient, because it does not depend on nding regions of the latent
on the line segment on equal intervals and sample their neighbor-space that decode to valid words. Furthermore, because of the sim-
hoods with the previous strategy, using smaller offset vector mag- ilarity metric and the graph topology, the intermediate shapes on
nitudes. Usually this sampling strategy yielded valid strings close paths in the graph are subjectively more intuitive interpolation re-
to the endpoints of the line segments, which is in line with the hy- sults than the shapes we encountered by sampling on line segments
pothesis of valid latent point living close to a manifold in latent in latent space.

space. . . . .
P We also experimented with a triplet contrastive |106S5B10

SSK 17], which can improve sampling results by grouping the em-
strategies motivated us to further restrict sampling locations near P€dding of similar shapes in latent space. However, in our experi-
“valid” points in latent space. Instead of sampling point on the line _ments,_the addltl_onal_los_s sl_owgd down training without noticeably
segment between pairs of encoded training samples, we construcimproving the_pomtdlstrlbutlon in Iatentspa_ce. We therefore report
a path (of length 32) by repeatedly splitting the current segments results only with a standard VAE loss function.

with the training samples closest to both endpoints of each seg-
ment. We then sample each path segment equidistantly and sampl%
in the resulting neighborhoods analogous to the linear interpolation
case. Path sampling delivered more valid samples compared to lin-The shape synthesis approach we discussed so far consists of two
ear interpolation, which in turn was slightly more productive than parts. We rst use an inverse procedural modeling method to gener-
simply perturbing points. ate a set of models using partial graph symmetries. Then, we vector-
ize the shape graphs of the sample models using SMILES strings,
which are subsequently used as a training set for a variational au-
toencoder. Sampling from the latent space of the autoencoder gen-
The main motivation behind our learning method is the continu- erates string representation of further shape graphs with unknown
ous shape representation provided by the variational autoencoderinstantiation in Euclidean space.

which facilitates high-level shape synthesis operations such as sam-

pling and interpolation. In this Section, we describe how to equip
the latent space with a metric that assigns a semantic or intuitive
meaning to geodesic distances on that (unknown) manifold of sam-
ples decoding into valid strings. This can be achieved either by a
continuousdeformation that brings samples corresponding to sim-
ilar shapes closer together or bydascretestructure (graph) that
connects samples of similar shapes.

Latent Path Sampling The results of the previous sampling

Instantiation of Structure Graphs

5.3. Latent Space Structuring

In the following, we describe how we reduce instantiation of
structured shape graphs to a classi cation problem. The main moti-
vation behind our approach is to re-use the procedurally generated
shape database, and train a recurrent neural network to embed topo-
logical graph representation back into 3D. The method consists of
two main steps. We rst estimate a set of possibligje categories
for each edge type. In other words, for each pair of paftsand of
typesA; B, we compute all possible ways to assemble them together
We demonstrate an example by introducing a pairwise histogram and discretize them into a nite set of categories. (see Figire

similarity metric Then, we train a recurrent neural network to estimate these discrete
o 1 °o . . edge con gurations from SMILES strings. The resulting sequence
E(cy) = Ny + Ny Tz?'ypesJTX L de ne a spatial embedding of the shape graph represented by the
string.

whereNy is the number of building blocks in shageandTy is the

number of building blocks of typ@ in the shape. Local Coordinate Frame Estimation In order to compute al-

To improve the ef ciency of shape sampling, we implemented an lowed con gurations of pairs of parts, we rst need to estimate a
alternative method for latent space exploration based on to topolog-Standard local coordinate frame for each individual piece. A com-
ical graph search. A conceptually similar approach has been pro-mon approach to address this problem is to perform PCA (Princi-
posed in BYMW13]. Here, we compute a set of (random and/or pal Component Analysisfea0]) on the set of vertices and use the
training) points that decode to valid strings and organized them as principal axes as a coordinate frame. However, this method is not
nodes in a search graph. We connect each node with a user defeliable for parts with global symmetries because they do not have
ned number of closest neighbors (w.r.t. Euclidean distance in la- & canonical ordering of their principle components.

tent space) and every other node in the graph that decodes to an Instead of PCA, we use a similar approach that considers only

equivalentstring, i.e., a str_mg representlng the same g_raph topol- extremal points which makes it robust to deformations on the inte-
0gy- Be(_:f_:luse each shape is represented via multiple strlngs_, we I(epFior of parts. We compute a shape “diagonal” by nding the vertex

the ad.d|t|ona| degree of the nodes low (betvyeen 3 and.5) n orderv farthest away from the center of gravity and the vertex farthest
to av0|_d close to_fuIIy con_nected graphs. Using t_opologlcal _search away fromv. We then nd the vertex with maximal distance to the

operations on this graph IS more ef (_:lent tha_n bI_|ndIy sampling in diagonal. We average multiple vertices with the maximal distances
!atept space, and al!ows Incorporating .appllcatlon erende.nt Ob'in any of the three searches if the result is not unique. The diagonal
]PTCt!Ve?’ as edge weights. We then assign edge weights using theand the last vertex together with its projection onto the diagonal de-
similarity metric, denoted . ne a local coordinate frame, which worked better than PCA axes

This allows formulating interpolation between pairs of shapes as in our experiments.

C 2019 The Author(s)
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Figure 5: Data-driven estimation of edge con gurations. From left to right: the input model, the allowed edge types according to the
extracted grammar, the part centroids for edges of type CD and DA, and all valid pairwise con gurations for each edge type (the second
piece is replicated to illustrate possible local assemblies). We cluster relative positions (and orientations) for each valid pair of types to
estimate possible con gurations. Then we train a recurrent neural network to assign con gurations to graph edges and thereby embed shape
graphs in 3D.

Edge Category Estimation Using the canonical coordinate  gence to the optimal set of parameters during training. On the other
frames for each part type, we can compute a set of valid con g- hand, masking eliminates signi cant number of possible prediction
urations for pairs of adjacent parts. Each con guration represents errors and improves the prediction accuracy on the test samples.

a different way to attach (or dock) the two pieces to each other.
We solve this by clustering relative part positions (and, if neces-
sary orientations) for each edge type (see Figlieeross the shape
database. We use Mean Shift Clusteri@gp§93, because the num-

The availability of multiple SMILES-like representations of the
same graph plays to our advantage here, since it provides multi-
ple training samples from each generated shape. Even though the
. . . .. general problem of instantiating structure graphs is extremely hard,
ber of clusters is not known in advance. Means Shift Clustering is learning on the shape collections we generate via graph-based sam-

a gocr)dt tdforl OIf[r rda:ﬁ ?]lio f)ect:'?usi thie is?]mv\pl)le p;](?lnrts f(xrr]n :’e”'n pling resulted in very accurate predictions: the accuracy on the val-
separated clusters thanks 1o the precision we enforce When gens o, get of samples reached 90% and the model consistently pre-
erating the set of training shapes. Note that we estimate 3D edge

. . . . dict test sequences with only few mistakes (e.g. 6 wrong categories
con gurations, meaning that the method is not restricted to planar for a sequence of length 85). We reduced the amount of errors by
shape graphs. estimating categories for multiple SMILES strings representing the

Edge Category Mapping A problem we need to work around is same graph_and selecting the most likely category for each e(_jge

that the characters of SMILES strings represent node sequences in&' 0> all ofits occurrences in the sequences. As a result the trained

stead of edges. However, the graph nodes appear in the string ir]neural network can be used to provide an initial guess for the instan-
f : . tiation of strings generated by the VAE in Sectian

the same order they would appear in spanning tree of the graph.

Therefore, it is possible to map a graph edge to each character 'nGraph Instantiation Using the estimated edge categories, we

the string representing a graph node: the edge between the node :
and its parent in the spanning tree. Additionally, numbers that rep- convert the graph topology to a geometric shape as follows. We

- . start at a random edge of the target graph and incrementally add
resent cycles also correspond directly to graph edges. We assign g get grap y

dummy category to each string character that does not represent odes by transplanting random edges with matching categories
y gory 10 ¢ 9 . p From the (two) input shapes. Note that we need to consider the edge
graph node. These include brackets and special characters used t

separate numbers superseding nodes adiacent to multinle cveles 8ategories in both edge directions for a correct instantiation. We
P u up 9 ! ultiple cycles. improve the success rate of the algorithm by computing the current

. . . shape subgraph and checking it for grammar violations or poorly
Edge Cat L Aft truct betw S S
ge ~ategory Learning Atter consucting a mapping beween attached building blocks. If we detect a violation that cannot be re-

each SMILES string and a sequence of graph edge categories, we__. - . . . .
can train a sequence to sequence mo8¥IL[14] on the resulting paired by selecting a different edge with matching categories, we

pairs. Since our target sequences have the same length as the ianﬁSsume that the requested pair of edge categories is wrong and re-

. r Monte-Carl insertion T W I random
strings, we can use a standard deep recurrent neural network con3? tto a Monte-Carlo edge insertion step: We select a random edge

sisting of an LSTM and a fully connected layer. We extended the from_ the |nputtshetl_pes \:Vlth_matgplng n(?jde typt(re]stand rgsutme the
model with a masking layer that restricts prediction to only plausi- previous construction algoriinm 1t we -nd one hat can be trans

ble edge categories for the particular edge type. The possible cate-pl"jlnteOI without violating the grammar.

gories for each edge in a string depend only on the node types con- The success rate of our instantiation method depends on the qual-
nected by the edge and can be computed for any shape graph (seity of estimated edge categories. We could not embed very large
Figure5). Therefore we multiply each output vector with a mask cycles without estimating correctly all (or all but one) con gura-
that zeroes the predicted probabilities for types different than the tions of participating edges. However, our method almost always
type of the current edge. In our experiments, introducing masking succeeds for tree-like shape graphs and shapes with smaller cycles,
lowered the initial prediction accuracy, but slightly slowed conver- as discussed in the following section.

c 2019 The Author(s)
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churches brick buildings

moon bases

playgrounds

sand castles greek houses

Figure 6: Input shapes §S and some (not hand-picked) sampled variants for each test model. Note that we are able to synthesize shapes
containing cycles of building blocks, which is not possible when using context-free shape grammars. We maintain high quality by automati-
cally repairing shapes with poorly connected pieces and enforce diversity by discarding variants with repeated node histograms.

7. Evaluation iteration: 1 2 3 4 nal
. . . . sizeS, strings  strings  strings  strings  strings
.Implementatlon. We |mplemented the shape synthesis algorithms scene  siz& shapes  shapes shapes shapes  shapes
++
in the paper using C++ with ThrusBH12], and Python._ Please _ 27K 169 964 4389 28596 138835
note that we provide the code as supplemental material and will church 45K 4 13 37 145 529
make the implementation available as open source with the MIT
license. sand 23K 88 374 1333 3832 146594
castle 13K 5 17 42 91 484
Test Models We tested our implementation on 3D models down- moon 243K 124 227 346 451 19299
loaded from online repositories or used in related work (the play- base 413K 5 7 7 10 68
ground model) with node counts ranging from 23 to 70 and tnangle olay- 120K 220 629 1751 3257 557895
counts_between 20000 a_nd 400000. Where necessary, we splitthe  ground 87K 6 12 17 18 137
model into parts and assigned node types by coloring them before
creating two example shapes by applying copy-paste operations, brick 113K 233 699 1265 2693 181969
: : o ; ; buildings 103K 6 9 15 18 104
translations, and rotations of building blocks. We then iteratively
select. pairs of .shapes, sample r'an.dom subgraphs and attempt to greek 28K 501 448639 _ _ 448639
combine them into new, valid variations. At the end of each itera- houses 37K 19 1084 - - 1084

tion we attempt to correct local part orientations of newly created
shapes and discard the model if the attempt fails, thereby main- r5pie 1:
taining reasonably high quality of sampled variations. We repeat

the procedure until we reach a suf ciently large number of strings 5 mount of strings compared to shapes is due to the multiple pos-

that we use for training. Note, that with the exception of the greek gjpe string representations of the same graph. We did not generate
houses examples, we evaluate on examples with very restrictive possible strings for each shape.

grammar rules, which makes it dif cult to sample new variations
both procedurally and later from the latent space of the autoen-
coder.

Input model sizes in the number of triangles and shape
collection growth with each iteration of sampling. The larger

to shape similarity. This can be addressed easily via constraints
Shape Interpolation See Figure for an example shape interpola- on latent space such as the construction detailed in Sebtibn
tion result using the latent space of the trained autoencoder. While The graph topological search (see Figlif performed very well
useful for discovering additional shapes, this method is not guar- on the majority of datasets and in particular on the playgrounds,
anteed to deliver desirable intermediate shapes, because distancegreek houses and moon bases. We validated the embedding pro-
the latent space of the autoencoder do not necessarily correspondided by our variational autoencoder by constructing the search

C 2019 The Author(s)
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B(AAAAB(AAAAQ)AC)(AC)AAAAB(AAAABOAAAD)AC

CAB(AAAAB(AC)AAQ)AAAAB(AAT)AAAB(AAAAB(AAAB(AAD)AAL)
AAAAB(AC)AAAAB(AD)AC)AC

A(AAAB(AAAAB(AC)AAAAB(AD)AC)AD)B(AC)AC

A(AAAB(AAAAB(AC)AAD)AD)B(AAL)AAAB(AAAAB(AAAB(AAD)AAL)
AAAAB(AC)AAAAB(AD)AC)AC

A(B(AAAAB(AD)AAAAB(AAAAD)AC)AC)AAABOAAAAB(AC)AAAAB(AD)AC . valid
(B( (AD). ( )AC)AC). (AC), (AD) target string:

CDA(DC)(DC)(DCDCDCDCDCDADADADADCD0)DCDCDCDCO
Figure 8: Invalid MCMC attempts to embed a graph with a large
cycle in 3D. The only “valid” (according to the extracted grammar)
shape does not have the graph topology represented by the string.
The remaining shapes contain a wall piece (D) and/or a red tower

. i ~ piece (A) with less than two neighbors.
Figure 7: Latent path example: The models (left to right) and their

string encodings (top to bottom) are discovered on a random path

in latent space with the leftmost and rightmost shapes as endpoints.
P g P P from the rst attempt. It should be noted, that related works (such

as RJT18 RMGH15) using context-free grammars, where this
problem is not present, can provide improved probability at each
graph na'|'Ve|y from Strings(see Ta[ﬁ)e Each point (String) is con- Step, however the eXponential nature of the problem remains.
nected to its 3_ nea_lrest points (strings) and all eq_uivalen_t strings. string: B(D)C(AC(BD)AC(ACOBD)BD)AC(AC(BD)AQ)BD
However, the simpli ed method produced graphs with multiple dis-
connected components, and edge augmentation made interpolation
paths very long both topologically and accordindg=o

graph  graph connected avg max
scene type size  components weight weight
sand naive 1000 102 4.71 12.17
castle ours 1000 1 0.50 1.09 training sample graph embedding
moon  naive 1000 30 2.29 5.50 Figure 9: Example model, its string decoded form the VAE's latent
base ours 1000 1 0.39 0.55 space, and embedded in 3D via estimated edge con gurations.
greek naive 1000 67 255  11.36 _ _ _ o
houses ours 1000 1 0.31 0.49 Compression The trained VAE model and instantiation RNN can

) ) . be used as a compressed representation of the shape database. Each

Table 2: Ablation study comparing a naive search graph construc- t the training shapes as well as additional samples generated via
tion using string similarity directly instead of distance in the au-  |5ient space sampling can be stored as two sequences: the string
toencoder latent space (see Sectiod). We sample shortest paths g presenting the graph topology and the corresponding sequence of
between nodes using the string similarity metric E as edge weights ¢ yge categories suf ce to reconstruct the shape exactly by “borrow-
in b_oth cases and report average and maximum (a(_:cumulated) edgemgn geometry from the pair of input models.
weights along these random path samples (lower is better).

Limitations Even though, this work makes a step towards solving

the problem, both discovering and instantiation of strings repre-
Probabilistic Methods Shape modeling methods based on sub- senting shapes with cycles, remains harder compared to context-
sequet random applications of grammar rules to generate shapegree variations. This is most likely caused by the string conversion
are not well suited for the topological variations we consider here. method, which is better suited for encoding sequences and works
We can demonstrate this by ignoring the suggested edge categoriesround branching and cycles via additional characters. An extreme
in the last step of our instantiation implementation, converting it example presents itself in the brick buildings dataset, where we had
to a naive random shape assembly algorithm. In Figune can to discard the cycle edges and only used strings representing the
see several failed attempts to compute a valid shape containingspanning trees of the shape graphs for training. We believe that
a long cycle. The probability of reproducing this particular cy- these limitation can be lifted by using a better variational autoen-
cle is approximatelys—h because of the 6 possible edge con g- coder, better suited for sampling vectorized graph topologies, e.qg.,
urations for each of the 15 participating green (C) and red (A) methods similar to Liu et alLJABG18]. It should also be noted that
tower pieces. Even a seemingly simple example such as the shap¢he amount of automation (an important aspect of our work) can
in Figure9 is very unlikely to be constructed via random applica- become a limitation in application scenarios that require a higher
tions of production rules, while we were able to embed the string degree of user control during modeling.

c 2019 The Author(s)
Computer Graphics Forunt 2019 The Eurographics Association and John Wiley & Sons Ltd.



J. Kalojanov & I. Lim & N. Mitra & L. Kobbelt / String-Based Synthesis of Structured Shapes

new

new new

Figure 10: Shape interpolation examples. We display random shortest paths from the graph in latent space with edge weights according to ¢
similarity metric. The resulting intermediate shapes are more intuitive compared to using Euclidean distances in latent space. Shapes marke
as “new” were not present in the (automatically generated) training sets and were discovered by sampling the latent space of the variational
autoencoder.
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8. Conclusion

We introduce a combination of a model-based and a data-driven

shape synthesis method able to create shapes from non-context

[KW13] KINGMA D. P., WELLING M.: Auto-Encoding Variational

Bayes.ArXiv e-prints(Dec. 2013).2, 4

[LABG18] Liu Q., ALLAMANIS M., BROCKSCHMIDT M., GAUNT
~ A. L.: Constrained graph variational autoencoders for molecule design.

free shape grammars, a problem that is undecidable in general. We CoRR abs/1805.09078018).8
achieve this by learning vectorized representations of shape graphs[LFOS] LEE J., FUNKHOUSERT.: Sketch-Based Search and Composi-

with a variational autoencoder and perform high-level modeling
operations via sampling in the resulting continuous latent space.

tion of 3D Models. InEurographics Workshop on Sketch-Based Inter-
faces and Modeling2008), Alvarado C., Cani M.-P., (Eds.), The Euro-

We also demonstrate how the resulting sequences can be mapped 9raphics Associatior2

back to geometric shapes by solving a classi cation problem. In

[LVvW 15] Liu H., VIMONT U., WAND M., CANI M.-P., HAHMANN

addition, we deduce the assembly rules and automatically create S., ROHMER D., MITRA N. J.: Replaceable substructures for ef cient

suf cient training shapes from a single (or a few) example shape
decomposed into building blocks. Altogether, our method provides

a proof of concept for automatic shape synthesis of structured shapél‘

variations with arbitrary number of parts.
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