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Abstrat. In this paper we propose an alternative method to build A-

tive Shape Models. It avoids the use of expliit landmarks sine it rep-

resents shapes by normal displaements relative to an average (domain)

ontour. By this we redue the redundany of the model and onse-

quently the number of parameters in our representation. The resulting

models have a signi�antly lower algebrai omplexity ompared to those

based on landmarks. Additionally we show how to automate the gener-

ation of ASMs from sets of unproessed training ontours in arbitrary

representation.

1 Introdution

Automati and reliable detetion of ontours in 2D and 3D image data is an

important tool in the �eld of medial image proessing. However, noisy arti-

fats and low ontrast usually ompliate this segmentation proess and hene,

suitable image proessing tehniques have to ompensate these diÆulties.

Digital �lters an redue the noise level and extrat gradient or edge informa-

tion from the images [1℄ but usually they do not provide topologial guarantees

for the ontours sine the lassi�ation is mostly done on a per pixel basis. Ative

Contours [2℄ improve the reliability of the segmentation by exploiting knowledge

about geometrial and topologial properties: a ontour is assumed to be loally

smooth and globally onneted. Ative Shape Models (ASM) [3℄ go one step

further by taking statistial knowledge about the expeted shape variations into

aount. A set of training ontours is analysed in a pre-proess and the ontour

detetion is then restrited to \plausible" shapes. Consequently, ASMs are par-

tiularly e�etive for medial appliations [4℄ whenever organi strutures an

be desribed by a (healthy) average anatomy and a set of typial (pathologial)

deviations.

ASM is a purely algebrai approah to extrat the major shape variations

from a given set of training ontours. In the standard setup, a set of spei�

landmarks is (manually) piked on eah training ontour and the oordinates of

the landmark positions are onatenated to build a feature vetor. By applying

a Prinipal Component Analysis (PCA) to the set of training feature vetors, we

�nd the major axes of the shape variations. The basis transform indued by the

PCA provides a mapping from the spae of feature vetors to model parameters.
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Fig. 1. In the standard ASM setup (left) a set of landmarks p

i;j

is piked on eah

ontour. The two landmark oordinates enter the model without taking the di�erent

nature of normal versus tangential displaement into aount. In our new model (right)

we do not use individual landmarks but we rather re-sample eah ontour by shooting

rays in normal diretion from an average ontour

�

C.

Sine the PCA also provides a ranking of the model parameters aording to

their shape relevane, we an fous on a small set of leading model parameters

while still apturing all signi�ant shape variations.

In this formulation, ASM treats ontours like isolated point samples in some

higher dimensional spae without taking into aount the geometri oherene of

the landmark positions. The only geometri aspet in the standard ASM setup is

that eah ontour is aligned to a global oordinate system by an aÆne transfor-

mation. This is neessary to avoid the detetion of pseudo deformations whih

happen to be rigid rotations or translations of the ontours. Otherwise, the fat

that the positions of neighboring landmarks are not ompletely independent is

ignored and true shape variations (where the landmarks move in normal dire-

tion to the ontour) are treated exatly like insigni�ant hanges of the landmark

distribution along the ontour (where landmarks move in tangent diretion).

As an alternative approah, we suggest to replae the feature vetors in the

standard setup by a vetor of normal displaements relative to an average on-

tour. By this we an inorporate muh more geometri information into the

model. Eah hange in the displaement values represents a true hange in the

ontour shape sine tangential movement of the samples is not possible (Fig. 1).

In addition we avoid the tedious manual pre-proess of piking the landmarks on

every training ontour sine the displaement an be omputed automatially

by simply interseting normal rays from the average ontour with all training

ontours.

2 Contour Representation and Model Building

A ontour is a losed urve C(t) : t 2 [0; 1℄ 7! R

2

with C(0) = C(1), that sep-

arates the plane into exatly two omponents (inside and outside). For eÆient

proessing, ontours are usually disretized and approximated by a polygon.

Standard ASM relies on landmarks p

i

= C(t

i

) with i = 1; : : : ; n, whih are

plaed at suitable loations on the ontour. The 2n-dimensional feature vetor



Fig. 2. To generate an average ontour, we �rst sum up the squared distane funtions

of all training ontours in a high resolution grid (left). Then we extrat the zero-ontour

and adaptively deimate it to redue its point ount (right). The minima and maxima of

the displaements d

i

of the training ontours provide additional geometri information

about the limits of the shape deformation enoded in the DDM.

used for the model is built by onatenation of the 2D vetors p

1

to p

n

. Statistial

models based on this ontour representation are known as Point Distribution

Models (PDM). To build a PDM, landmarks must be de�ned separately on all

training ontours C

j

(t) with j = 1; : : : ; k. Speial are has to be taken to avoid

tangential shifts of \synhronous" landmarks p

i;j

with j = 1; : : : ; k (Fig. 1), sine

these shifts along the ontour arry less signi�ant shape information, but still

inuene the model parameters when applying the PCA.

In ontrast, our method initially spei�es a smooth ontour

�

C, whih approx-

imates an average shape of the training data C

j

. From

�

C(t

i

) rays are shot in

normal diretion and interseted with the training ontours C

j

(t). We all the

resulting distanes displaements d

i;j

(Fig. 1). In that

�

C and the t

i

have to be de-

�ned only one, eah ontour C

j

is given by the salar values d

1;j

to d

n;j

. We all

a model based on this type of ontour representation a Displaement Distribution

Model (DDM) and the segmentation method using DDM Ative Displaement

Model (ADM).

�

C and ft

i

g represent the geometri framework for the ADM.

Major shape variations are found by applying the PCA to the training vetors

D

j

= [d

1;j

: : : d

n;j

℄. By de�nition fD

j

g ontains no tangential omponents and

therefore a DDM enodes only relevant shape information.

The ontour

�

C is alled domain ontour. We obtain

�

C by �rst summing up

the squared distane funtions of the training ontours in a high resolution grid

(Fig. 2). Then we extrat the highly detailed zero-ontour, whih approximates

the average shape of all training ontours. While deimating this ontour to a

lower point ount, we adapt to loal detail by keeping more points in areas of

high urvature. The remaining points de�ne the loations t

i

on

�

C. As long as a

distane funtion an be generated from a training ontour, any representation

an be used with this method, inluding impliit funtions and disrete images.

The minima and maxima of the displaements d

i;j

of the training ontours are

easily obtained and de�ne the bounding hull of the shape deformation enoded

in the DDM (Fig. 2).
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Fig. 3. Created from the same syntheti input data (left), a DDM redues the approx-

imation error ompared to a PDM (vertial axis) and has the same desriptive power

with fewer model parameters (horizontal axis). Using real data (right), the DDM again

shows better approximation properties. In both ases the DDM uses a feature vetor

of only half dimension, reduing the ost for the PCA onsiderably.

3 Results

In our experiments we evaluate the approximation power of a DDM in ompari-

son to a PDM when using the same training data. In any ase, the feature vetor

of a DDM has only half the size of that of a PDM representing the same number

of samples of a ontour. This onsiderably redues the ost of applying a PCA

to the training ontours while ahieving the same approximation quality.

3.1 Approximation Power of Shape Models

In the following we build a PDM and a DDM both with syntheti and real data.

Then we sum up the Hausdor� distane between all original training ontours

and their approximations after mapping to the shape model using a varying

number of model parameters. The aliasing error generated by resampling with

the domain ontour

�

C turned out to be negligible.

First we generate 200 variants of a ontour with 64 points. For this we start

with a ontour of 8 points and alternate steps of deformation and subdivision.

The maximum amplitude of the deformation is attenuated in eah step. The

last step is a deformation. The PDM uses the 64 points diretly as landmarks.

Consequently the PDM feature vetor has 128 entries. For the DDM we auto-

matially generate a domain ontour with 64 points. Hene the DDM feature

vetors have only 64 entries. Using the same number of model parameters, our

model redues the approximation error (Fig. 3).

On 10 real radiographs of vertebrae 52 landmarks have been piked by hand

(data ourtesy by the Department of Diagnosti Radiology of the RWTH Aahen

Univerisity Hospital). Like above the PDM uses the landmarks diretly for model

building. For the DDM we automatially generate a domain ontour and use 52

displaements independent from the landmark loations. The results are similar

to those with syntheti data. Even with the low number of training ontours we



observe the same trends in the relation of model parameters to approximation

error (Fig. 3).

3.2 Segmentation

The method of extrating ontours from images using ASM is desribed in full

detail in [3℄. Here we build both a DDM and a PDM for 9 of 10 vertebrae

and ompare the ASM segmentation of the 10th vertebra with the respetive

hand-segmented ontour (leaving-one-out). Using ADM instead of ASM makes

pratially no di�erene one the model of shape is available and we observe

omparable segmentation results.

4 Disussion

ADM in omparison to ASM avoids landmarks and therefore irumvents the

diÆulties related to the reliable detetion of landmarks. Although the approx-

imation by displaements is as good as using landmarks, the dimension of the

ontour representation is halved. A DDM in ontrast to a PDM is guaranteed to

only store relevant shape information. The generation of domain ontours and

the measurement of displaements is done automatially and is also automati-

ally adaptable to loal detail. This is a big advantage ompared to PDM, where

model generation requires manual preparation of the raw data. Furthermore the

representation of training ontours for the DDM is not restrited to polygons.

Finally a DDM shows signi�antly improved approximation power ompared to

a PDM based on the same input data.

Due to potential aliasing during resampling, a DDM is not very well suited for

enoding ontours with sharp edges. This problem ould be solved by applying

a hybrid model using both landmarks and displaements.

In [5℄ the ADM approah is generalized to 3D, resulting in an even larger

ost redution for applying a PCA on training data, sine the feature vetor size

is redued by a fator of 3.
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