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Abstra
t. In this paper we propose an alternative method to build A
-

tive Shape Models. It avoids the use of expli
it landmarks sin
e it rep-

resents shapes by normal displa
ements relative to an average (domain)


ontour. By this we redu
e the redundan
y of the model and 
onse-

quently the number of parameters in our representation. The resulting

models have a signi�
antly lower algebrai
 
omplexity 
ompared to those

based on landmarks. Additionally we show how to automate the gener-

ation of ASMs from sets of unpro
essed training 
ontours in arbitrary

representation.

1 Introdu
tion

Automati
 and reliable dete
tion of 
ontours in 2D and 3D image data is an

important tool in the �eld of medi
al image pro
essing. However, noisy arti-

fa
ts and low 
ontrast usually 
ompli
ate this segmentation pro
ess and hen
e,

suitable image pro
essing te
hniques have to 
ompensate these diÆ
ulties.

Digital �lters 
an redu
e the noise level and extra
t gradient or edge informa-

tion from the images [1℄ but usually they do not provide topologi
al guarantees

for the 
ontours sin
e the 
lassi�
ation is mostly done on a per pixel basis. A
tive

Contours [2℄ improve the reliability of the segmentation by exploiting knowledge

about geometri
al and topologi
al properties: a 
ontour is assumed to be lo
ally

smooth and globally 
onne
ted. A
tive Shape Models (ASM) [3℄ go one step

further by taking statisti
al knowledge about the expe
ted shape variations into

a

ount. A set of training 
ontours is analysed in a pre-pro
ess and the 
ontour

dete
tion is then restri
ted to \plausible" shapes. Consequently, ASMs are par-

ti
ularly e�e
tive for medi
al appli
ations [4℄ whenever organi
 stru
tures 
an

be des
ribed by a (healthy) average anatomy and a set of typi
al (pathologi
al)

deviations.

ASM is a purely algebrai
 approa
h to extra
t the major shape variations

from a given set of training 
ontours. In the standard setup, a set of spe
i�


landmarks is (manually) pi
ked on ea
h training 
ontour and the 
oordinates of

the landmark positions are 
on
atenated to build a feature ve
tor. By applying

a Prin
ipal Component Analysis (PCA) to the set of training feature ve
tors, we

�nd the major axes of the shape variations. The basis transform indu
ed by the

PCA provides a mapping from the spa
e of feature ve
tors to model parameters.
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Fig. 1. In the standard ASM setup (left) a set of landmarks p

i;j

is pi
ked on ea
h


ontour. The two landmark 
oordinates enter the model without taking the di�erent

nature of normal versus tangential displa
ement into a

ount. In our new model (right)

we do not use individual landmarks but we rather re-sample ea
h 
ontour by shooting

rays in normal dire
tion from an average 
ontour

�

C.

Sin
e the PCA also provides a ranking of the model parameters a

ording to

their shape relevan
e, we 
an fo
us on a small set of leading model parameters

while still 
apturing all signi�
ant shape variations.

In this formulation, ASM treats 
ontours like isolated point samples in some

higher dimensional spa
e without taking into a

ount the geometri
 
oheren
e of

the landmark positions. The only geometri
 aspe
t in the standard ASM setup is

that ea
h 
ontour is aligned to a global 
oordinate system by an aÆne transfor-

mation. This is ne
essary to avoid the dete
tion of pseudo deformations whi
h

happen to be rigid rotations or translations of the 
ontours. Otherwise, the fa
t

that the positions of neighboring landmarks are not 
ompletely independent is

ignored and true shape variations (where the landmarks move in normal dire
-

tion to the 
ontour) are treated exa
tly like insigni�
ant 
hanges of the landmark

distribution along the 
ontour (where landmarks move in tangent dire
tion).

As an alternative approa
h, we suggest to repla
e the feature ve
tors in the

standard setup by a ve
tor of normal displa
ements relative to an average 
on-

tour. By this we 
an in
orporate mu
h more geometri
 information into the

model. Ea
h 
hange in the displa
ement values represents a true 
hange in the


ontour shape sin
e tangential movement of the samples is not possible (Fig. 1).

In addition we avoid the tedious manual pre-pro
ess of pi
king the landmarks on

every training 
ontour sin
e the displa
ement 
an be 
omputed automati
ally

by simply interse
ting normal rays from the average 
ontour with all training


ontours.

2 Contour Representation and Model Building

A 
ontour is a 
losed 
urve C(t) : t 2 [0; 1℄ 7! R

2

with C(0) = C(1), that sep-

arates the plane into exa
tly two 
omponents (inside and outside). For eÆ
ient

pro
essing, 
ontours are usually dis
retized and approximated by a polygon.

Standard ASM relies on landmarks p

i

= C(t

i

) with i = 1; : : : ; n, whi
h are

pla
ed at suitable lo
ations on the 
ontour. The 2n-dimensional feature ve
tor



Fig. 2. To generate an average 
ontour, we �rst sum up the squared distan
e fun
tions

of all training 
ontours in a high resolution grid (left). Then we extra
t the zero-
ontour

and adaptively de
imate it to redu
e its point 
ount (right). The minima and maxima of

the displa
ements d

i

of the training 
ontours provide additional geometri
 information

about the limits of the shape deformation en
oded in the DDM.

used for the model is built by 
on
atenation of the 2D ve
tors p

1

to p

n

. Statisti
al

models based on this 
ontour representation are known as Point Distribution

Models (PDM). To build a PDM, landmarks must be de�ned separately on all

training 
ontours C

j

(t) with j = 1; : : : ; k. Spe
ial 
are has to be taken to avoid

tangential shifts of \syn
hronous" landmarks p

i;j

with j = 1; : : : ; k (Fig. 1), sin
e

these shifts along the 
ontour 
arry less signi�
ant shape information, but still

in
uen
e the model parameters when applying the PCA.

In 
ontrast, our method initially spe
i�es a smooth 
ontour

�

C, whi
h approx-

imates an average shape of the training data C

j

. From

�

C(t

i

) rays are shot in

normal dire
tion and interse
ted with the training 
ontours C

j

(t). We 
all the

resulting distan
es displa
ements d

i;j

(Fig. 1). In that

�

C and the t

i

have to be de-

�ned only on
e, ea
h 
ontour C

j

is given by the s
alar values d

1;j

to d

n;j

. We 
all

a model based on this type of 
ontour representation a Displa
ement Distribution

Model (DDM) and the segmentation method using DDM A
tive Displa
ement

Model (ADM).

�

C and ft

i

g represent the geometri
 framework for the ADM.

Major shape variations are found by applying the PCA to the training ve
tors

D

j

= [d

1;j

: : : d

n;j

℄. By de�nition fD

j

g 
ontains no tangential 
omponents and

therefore a DDM en
odes only relevant shape information.

The 
ontour

�

C is 
alled domain 
ontour. We obtain

�

C by �rst summing up

the squared distan
e fun
tions of the training 
ontours in a high resolution grid

(Fig. 2). Then we extra
t the highly detailed zero-
ontour, whi
h approximates

the average shape of all training 
ontours. While de
imating this 
ontour to a

lower point 
ount, we adapt to lo
al detail by keeping more points in areas of

high 
urvature. The remaining points de�ne the lo
ations t

i

on

�

C. As long as a

distan
e fun
tion 
an be generated from a training 
ontour, any representation


an be used with this method, in
luding impli
it fun
tions and dis
rete images.

The minima and maxima of the displa
ements d

i;j

of the training 
ontours are

easily obtained and de�ne the bounding hull of the shape deformation en
oded

in the DDM (Fig. 2).
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Fig. 3. Created from the same syntheti
 input data (left), a DDM redu
es the approx-

imation error 
ompared to a PDM (verti
al axis) and has the same des
riptive power

with fewer model parameters (horizontal axis). Using real data (right), the DDM again

shows better approximation properties. In both 
ases the DDM uses a feature ve
tor

of only half dimension, redu
ing the 
ost for the PCA 
onsiderably.

3 Results

In our experiments we evaluate the approximation power of a DDM in 
ompari-

son to a PDM when using the same training data. In any 
ase, the feature ve
tor

of a DDM has only half the size of that of a PDM representing the same number

of samples of a 
ontour. This 
onsiderably redu
es the 
ost of applying a PCA

to the training 
ontours while a
hieving the same approximation quality.

3.1 Approximation Power of Shape Models

In the following we build a PDM and a DDM both with syntheti
 and real data.

Then we sum up the Hausdor� distan
e between all original training 
ontours

and their approximations after mapping to the shape model using a varying

number of model parameters. The aliasing error generated by resampling with

the domain 
ontour

�

C turned out to be negligible.

First we generate 200 variants of a 
ontour with 64 points. For this we start

with a 
ontour of 8 points and alternate steps of deformation and subdivision.

The maximum amplitude of the deformation is attenuated in ea
h step. The

last step is a deformation. The PDM uses the 64 points dire
tly as landmarks.

Consequently the PDM feature ve
tor has 128 entries. For the DDM we auto-

mati
ally generate a domain 
ontour with 64 points. Hen
e the DDM feature

ve
tors have only 64 entries. Using the same number of model parameters, our

model redu
es the approximation error (Fig. 3).

On 10 real radiographs of vertebrae 52 landmarks have been pi
ked by hand

(data 
ourtesy by the Department of Diagnosti
 Radiology of the RWTH Aa
hen

Univerisity Hospital). Like above the PDM uses the landmarks dire
tly for model

building. For the DDM we automati
ally generate a domain 
ontour and use 52

displa
ements independent from the landmark lo
ations. The results are similar

to those with syntheti
 data. Even with the low number of training 
ontours we



observe the same trends in the relation of model parameters to approximation

error (Fig. 3).

3.2 Segmentation

The method of extra
ting 
ontours from images using ASM is des
ribed in full

detail in [3℄. Here we build both a DDM and a PDM for 9 of 10 vertebrae

and 
ompare the ASM segmentation of the 10th vertebra with the respe
tive

hand-segmented 
ontour (leaving-one-out). Using ADM instead of ASM makes

pra
ti
ally no di�eren
e on
e the model of shape is available and we observe


omparable segmentation results.

4 Dis
ussion

ADM in 
omparison to ASM avoids landmarks and therefore 
ir
umvents the

diÆ
ulties related to the reliable dete
tion of landmarks. Although the approx-

imation by displa
ements is as good as using landmarks, the dimension of the


ontour representation is halved. A DDM in 
ontrast to a PDM is guaranteed to

only store relevant shape information. The generation of domain 
ontours and

the measurement of displa
ements is done automati
ally and is also automati-


ally adaptable to lo
al detail. This is a big advantage 
ompared to PDM, where

model generation requires manual preparation of the raw data. Furthermore the

representation of training 
ontours for the DDM is not restri
ted to polygons.

Finally a DDM shows signi�
antly improved approximation power 
ompared to

a PDM based on the same input data.

Due to potential aliasing during resampling, a DDM is not very well suited for

en
oding 
ontours with sharp edges. This problem 
ould be solved by applying

a hybrid model using both landmarks and displa
ements.

In [5℄ the ADM approa
h is generalized to 3D, resulting in an even larger


ost redu
tion for applying a PCA on training data, sin
e the feature ve
tor size

is redu
ed by a fa
tor of 3.
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