EUROGRAPHICS 2008 / G. Drettakis and R. Scopigno
(Guest Editors)

Volume 27 (2008), Number 2

High-Resolution Volumetric Computation of Offset Surfaces

with Feature Preservation

Darko Pavi¢ and Leif Kobbelt

Computer Graphics Group, RWTH Aachen University, Germany

Abstract

We present a new algorithm for the efficient and reliable generation of offset surfaces for polygonal meshes.
The algorithm is robust with respect to degenerate configurations and computes (self-)intersection free offsets
that do not miss small and thin components. The results are correct within a prescribed €-tolerance. This is
achieved by using a volumetric approach where the offset surface is defined as the union of a set of spheres,
cylinders, and prisms instead of surface-based approaches that generally construct an offset surface by shifting
the input mesh in normal direction. Since we are using the unsigned distance field, we can handle any type of
topological inconsistencies including non-manifold configurations and degenerate triangles. A simple but effective
mesh operation allows us to detect and include sharp features (shocks) into the output mesh and to preserve them
during post-processing (decimation and smoothing). We discretize the distance function by an efficient multi-level
scheme on an adaptive octree data structure. The problem of limited voxel resolutions inherent to every volumetric
approach is avoided by breaking the bounding volume into smaller tiles and processing them independently. This
allows for almost arbitrarily high voxel resolutions on a commodity PC while keeping the output mesh complexity
low. The quality and performance of our algorithm is demonstrated for a number of challenging examples.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling

1. Introduction

Offset surfaces play a very important role in geometry pro-
cessing and especially in various CAD/CAM applications.
They can be used for tolerance analysis in machine process-
ing and collision detection. In the context of tool path gen-
eration for numerically controlled (NC) milling machines,
offset surfaces are used to define the domain where the ma-
chine tool positions are constrained to lie and they provide
the input for collision-free path planning. Furthermore off-
set surfaces are used in finite element modeling, electrical
circuit design, for generating hollowed or shelled versions
of surface models, filleting and rounding of 3D models, as
well as for morphological operations on geometric models.

Polygonal meshes are the most popular representation for
3D models because they provide the simplest way to approx-
imate any possible shape. Since all commercial CAD sys-
tems are able to handle polygonal meshes or at least provide
import and export routines for them, polygonal meshes can
be seen as the universal geometry representation for inter-

(© 2008 The Author(s)

Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

change. The most common standard data format is the STL
format (STereoLithography), where meshes are represented
as triangle soups, i.e. as sets of triangles without any addi-
tional connectivity information. Such a format is on the one
hand easy to generate, but on the other hand when transfer-
ring STL-files between systems, various types of inconsis-
tencies can occur like thin gaps, holes, and flipped orienta-
tion. In this paper we propose a novel method for computing
offset surfaces for polygonal meshes which is able to handle
any kind of such inconsistencies.

An offset surface of a solid is the set of points having the
same distance & (offset distance) from the original geome-
try. The offsetting operation can be understood as a special
case of the Minkowski sum which is a well explored oper-
ation in mathematical morphology [Ser83]. The Minkowski
sum of two sets M and S in Euclidian space is defined as
M®S={m+s|meM,s € S}. If we take M to be an arbi-
trary input mesh and S a sphere of the given radius d centered
at the origin then an offset surface is defined as the bound-
ary of their Minkowski sum. Notice that this definition is



Darko Pavi¢ & Leif Kobbelt / High-Resolution Volumetric Computation of Offset Surfaces with Feature Preservation

based on an unsigned distance function. Hence for closed
objects, an offset surface usually falls into at least two con-
nected components (inner and outer).

For a polygonal mesh, the Minkowski sum can be de-
composed into a set of spheres, cylinders, and prisms cor-
responding to vertices, edges, and faces of the mesh. A con-
structive solid geometry approach to offset surface compu-
tation is based on computing the union of all these elements,
i.e., computing the minimum of the superposition of all the
unsigned distance fields associated with these elements. In
our algorithm we follow a volumetric approach to identify
the cells in a voxel grid that are intersected by the offset sur-
face and extract a polygonal representation from them. The
most important properties of our algorithm are:

e hierarchical: By using an octree data structure, high
voxel resolution is only generated in regions that are actu-
ally affected by the offset surface. Refining an octree cell
is done only if the minimum distance of the cell to the
input geometry is below the offset distance and the maxi-
mum is above the offset distance.

e features: Sharp features on the offset surface, which are
caused by concave regions of the input geometry, are
properly detected and reconstructed. Hence the visual
quality and accuracy of the output is not affected by the
fact that the distance function is discretely sampled on an
adaptive octree grid.

e correctness: The algorithm is guaranteed to produce
the geometrically correct output within a prescribed e-
tolerance even for input meshes with topological incon-
sistencies. No thin parts are lost. The topological resolu-
tion, i.e., the minimum distance between separate sheets
is bounded by the minimum voxel size or, equivalently, by
the maximum refinement level of the octree.

e scalability: Since each sub-region of the input can be pro-
cessed independently from the others, it is straightforward
to confine the offset computation to a sub-cell of the em-
bedding space. This allows for virtually unlimited voxel
resolutions since the bounding volume can be split into
(overlapping) tiles, which can be processed sequentially
to save memory or in parallel to save computation time.

There are two major observations that have inspired our ap-
proach to offset computation and which distinguish our al-
gorithm from previous approaches.

e transpose computation: For a proper evaluation of the
distance function within a voxel cell, we would have to
compute the minimum distance for each point within the
cell to all triangles and then take the minimum and max-
imum of these distances across the cell. Instead we com-
pute for each triangle the minium and maximum distances
within a cell by a closed formula and then take the mini-
mum over all triangles. While this computation is correct
for the minimum distance, it provides only a conserva-
tive estimate of the true maximum distance (max of min
< min of max). Hence, we base the actual offset compu-

Figure 1: Here we show the offsetting result for an ar-
chitectural model having all kinds of inconsistencies like,
holes, gaps, overlaps, double walls and self-intersections.
The zoomed views show complex regions of the model with
sharp feature lines in red.

tation only on the minum values and use the maximum
distance estimates as an efficient refinement criterion for
the adaptive octree.

o offsets vs. (zero) iso-contours: The computation of off-
set surfaces is a very special instance of the more gen-
eral problem of iso-contour extraction. The major differ-
ence is that for offsets the part of the input geometry that
affects a certain region of the output surface has the dis-
tance §. Hence in a sufficiently refined voxel grid (or from
a certain octree level on) the input geometry always lies
outside the cell for which the distance function has to be
computed. This strongly reduces the number of special
configurations to be considered and efficient classification
schemes known from polygon clipping can be exploited.

Fig.1 shows an example of an offset generated with our
algorithm. Notice the quality of the extracted features. Since
our approach is volumetric, self-intersections are elimintated
automatically.

2. Related Work

The mathematical basis for offsetting of solids is described
in earlier work by Rossignac et al. [RR85]. There the offset-
ing operation is introduced as a new solid-to-solid transfor-
mation and associated with methods like filleting and round-
ing of solids. A number of methods for computing offset sur-
faces have been suggested since then.

An offset surface can be generated by creating solid prim-
itives (for each vertex a sphere, for each edge a cylinder and
for each face another parallel face) and combining those by
trimming to the final offset surface [RR8S5, For95]. This is
a computationally rather involved process and trimming at
tangential intersections is numerically very unstable. Our al-
gorithm is also based on computing the union of a set of
primitives. However, our computations are stable since we
work on a volumetric representation and hence intersections
are computed by min/max operations applied to distance

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.



Darko Pavi¢ & Leif Kobbelt / High-Resolution Volumetric Computation of Offset Surfaces with Feature Preservation

functions. Since our algorithm is a hierarchical approach
where the offset surface is intermediately represented by an
adaptively refined octree, it can be understood as a kind of
an adaptively sampled distance field [FPRJO0]. In order to
be able to extract the offset of a given surface we are com-
puting not only the minimum but also the maximum dis-
tance in each cell. Adaptive subdivision is an approach often
used, e.g., in the context of isosurface extraction [VKSMO04],
where usually sampling of a volumetric function is done at
cell corners. In contrary we are estimating minimum and
maximum distance for the cells as a whole.

Other surface-based approaches for generating offset sur-
faces simply shift the original vertices in offset direction
[QS03]. This is problematic when it comes to handle self-
intersections which can either occur locally in areas of
high curvature or globally when different parts of the in-
put mesh meet. If the input mesh is convex or decomposed
into convex pieces then this approach is simple and effec-
tive [VKKMO3]. In [CVM™*96] simplification envelopes are
introduced for global error-control in mesh simplification.
Their offset surface generation method requires manifold
meshes, which do not contain any degenerated configura-
tions. In contrary our algorithm can process all kinds of mesh
inconsistencies since we treat every triangle independently.

Offsetting is a very important operation in layered man-
ufacturing and in this context, approaches were introduced
where 3D offsetting is reduced to computing 2D offsets
of the 2D contours generated by slicing the input geome-
try [MSO00]. These methods, however, are not applicable for
more general scenarios. Since offsetting can be understood
as a morphological operation it is an intuitive approach to
extend the 2D pixel-based erosion and dilation operations
[GWO1] to 3D resulting in a very simple volumetric offset-
ting approach, where the 26-neighborhood in a voxel-grid is
used to propagate distance information [GZ95]. Obviously,
the accumulation of errors with increasing offset distances is
the main problem of this method.

More advanced volumetric methods were presented
based on distance volumes and the fast marching method
[BMWO9S8, BM99]. While these methods work on regular
voxel grids, we use an adaptive octree datastructure instead,
which allows for much higher voxel resolutions for a given
memory budget. Moreover, the approximation properties of
fast marching [Set99, OF02] do not allow for high accuracy.
In contrast, our method uses accurate distance computations
for the offset surface extraction.

Varadhan et al. [VMO04] have proposed a method to ap-
proximate the Minkowski sum of polyhedral models, which
covers also the computation of offset surfaces as a special
case. Since our approach is especially designed for offset
surface computation it runs much faster (see Section 8). The
acceleration is mostly due to our cell-to-X (X € { vertex,
edge, triangle } distance computation described in Section 4
which is more specialized than the max-norm distance com-
putation in [VMO04]. Furthermore our method is immune to

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.

all kinds of degeneracies in the input model whereas their
method requires closed manifolds which are free from arti-
facts like self-intersections.

Recently, a point-based offsetting approach was intro-
duced [CWRRO05b, CWRRO05a]. Here point samples are first
generated on the input surface and then moved in normal di-
rection. The Minkowski sum volume is rasterized on a regu-
lar voxel grid in order to remove self-intersections. In a regu-
lar grid, the computational and memory complexity is grow-
ing cubically with the voxel resolution. In our algorithm,
voxel cells are generated on demand by traversing an octree
in breadth first order. This guarantees that only those cells
are generated which are actually needed for the offset sur-
face extraction. This implies that the complexity only grows
quadratically with the resolution. In [HLC*01, HCO02], an-
other offsetting approach is presented which is mostly aim-
ing at visualizing the offset via surface splats. In their case
the classification whether a cell intersects the offset surface
is based on conservative estimates for both the minimum and
maximum distance. While this is sufficient for visualization
purposes, it would be non-trivial to extract a proper mani-
fold offset surface from it. This is why we use an estimate
only for the maximum distance and compute the exact min-
imum distance for each cell. To the resulting adaptive voxel
grid we apply the surface extraction scheme of [BPKO05] to
generate a guaranteed manifold output mesh.

Feature preservation for offset surfaces is addressed in
[QZS*04] where the spatial cells are adjusted to align with
gradient discontinuities. We use a standard adaptive octree
and recover features from normal information [KBSSO01].

3. Algorithm Description

The input to our algorithm is an arbitrary, maybe non-
manifold or otherwise degenerated polygonal mesh M =
(V,E,F) consisting of a set of vertices V, a set of edges E
and a set of faces F. Moreover the user specifies an offset
distance § and a maximum octree level £. The maximum oc-
tree level obviously limits the topological resolution € of the
offset surface since in each cell only one sheet of the surface
can be extracted. Hence sheets of the offset surface which
are closer than the size of a voxel are implicitly merged.
This limitation is acceptable for most practical applications
since the input STL file is usually only an approximation of
some unknown object surface anyway. Each of the elements
(vertex, edge, or face) of the mesh defines an unsigned dis-
tance function in space (represented by a sphere, cylinder or
prism). The offset surface of M is computed by taking the
minimum over all these distance functions in space.

3.1. Rasterization phase

The rasterization of the offset surface is done by traversing
an octree in breadth first order and splitting each cell which
is potentially intersected by the offset surface, i.e. for which
the minimum distance to M is less than 8 and (a conservative
estimate of) the maximum distance is larger than 8.



=T L - Y o

E NN

Darko Pavi¢ & Leif Kobbelt / High-Resolution Volumetric Computation of Offset Surfaces with Feature Preservation

In our transposed computation the minimum distance for
a cell can be found by simply taking the minimum of the
distances with respect to all vertex, edge, and face primi-
tives (see Section 4). If the cell does not intersect the input
surface, the minimum distance is always found somewhere
on the boundary of a cell (otherwise it is zero). For the maxi-
mum distance within a cell we would have to find that point,
which has the maximum minimum distance to any primitive
in the input. This information, however, is not available since
we are processing the individual primitives independently.
Hence we have to settle with a conservative estimate of the
maximum distance, the most simple one being the minimum
distance plus the diagonal of the cell. In Section 4 we will
describe a tighter estimate. The remaining false positives,
i.e. cells where the true maximum distance is below & while
our estimate is above & will be detected and discarded later
in the mesh extraction phase (see Section 3.2).

Our main data structure is a (linearized) octree where the
children of a cell are grouped in blocks of 8 cells. The cells
are defined as:

struct OctreeCellData {
int first_child;
int location[3];
float minDist, maxDist;
float minPoint[3], minNormal [3];
Datax primitives;
}s
struct Data {
Vertex_List V;
Edge_List E;
Face_List F;
1

Due to the linear layout, we only need to store the index
of the first child node, the others follow in the next seven en-
tries. The integer location of the cell is stored for efficiency
reasons. During the computation, minDist and maxDist
hold the currently best (lowest) estimate for the respective
distances. In addition we store the position minPoint where
the current minimum distance on the cell boundary is taken
on and the normal vector minNormal pointing to the corre-
sponding base point on the input surface M. This information
is used in the surface extraction phase (see Section 3.2) to
compute an offset surface sample within the cell. The pointer
primitives points to a set of lists that store those mesh prim-
itives which can have an effect on this cell, i.e., for which the
offset distance lies within the interval between minimum and
maximum distance. While maintaining these lists per cell
causes some memory overhead, it effectively avoids many
redundant computations on refined octree levels.

The pseudo-code of our rasterization method is:

root.minDist := 0;

root.maxDist := FLT MAX;
root.primitive—V := {all vertices}
root.primitive—E := {all edge}

root.primitive—F := {all faces}
for level =1 to L
for all cells C from level —1

if (C.minDist <8 < C.maxDist)
{
SPLIT(C);
for D = CHILD(C,0)
{
for all vie C.primitive—V
SPHERE MINMAX(v;, D);
for all e¢j€ C.primitive—E
CYLINDER_MINMAX (e, D);
for all fre C.primitive—F
PRISM_MINMAX (fr, D);

CHILD(C,7)

We initialize the root cell of the octree and push all mesh
elements into the list of relevant primitives. In the main loop
we traverse the octree level by level. Each surface cell from
the previous level is split and for each of its children the min-
imum and maximum distance is computed. By this approach
we refine the octree only when and where it is needed. The
template for the distance computation is:

<ELEMENT>_MINMAX (ELEMENT X, CELL C)
{

Dyin = min{ min| i}
J

D — 3 oy .
max = max{ min [le; —xjll[}:

C.minDist =
C.maxDist

min (C. minDist, Dy;,);
min (C. maxDist, Dpax);

if (Dmin < S < Dmax ))

C.primitives —>Push (X);

The different versions of the minmax procedures for
spheres, cylinders, and prisms only differ in the way how the
values Dp,in and Dmax are calculated. A detailed description
is given in Section 4. The minimum operation in line 6 guar-
antees that the global minimum is computed correctly. The
maximum, obtained by taking the minimum of the maxima
(see Line 7), is in general only a conservative estimate of the
true maximum distance. This can cause some slight com-
putational overhead due to false positive cells being split
but it does not affect the overall correctness of the algorithm
since these cells are discarded in the mesh extraction phase.
Figure 2 depicts such a situation. Notice that false positives
can only occur near the medial axis of the input geometry
(in cells where the maximum distance is not taken on at one
of the corners) and only in the interior of the offset volume
(since the minimum distance is always computed correctly).

T ie. cells that are wrongly assumed to intersect the offset surface.

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.



Darko Pavi¢ & Leif Kobbelt / High-Resolution Volumetric Computation of Offset Surfaces with Feature Preservation

Offset surface =——
Input surface e—e@
Real Max. e}
Approx. Max. @

T v 7, Cells: % §urface
inner
[0 false positive

Figure 2: Example for a false positive octree cell. Although
the maximum distance is computed correctly for each indi-
vidual triangle T;, the combination may lead to a conserva-
tive estimate, when the cell is intersected by the medial axis.
Eventually such false positive cells are never used for mesh
extraction since they are not adjacent to an outer cell.

3.2. Offset Surface Extraction

After the rasterization we have a number of surface cells
on the finest resolution level £ that are intersected by the
offset surface, i.e., for which minDist < & < maxDist. The
false positives among these surface cells are easily detected
as those which do not have a neighbor cell with 8 < minDist
(outer cell). See Figure 2 for details. All false positives are
discarded from mesh extraction. To the remaining surface
cells we apply the variant [BPK05] of the Dual Contouring
Algorithm [JLSWO2]. This variant is guaranteed to produce
manifold meshes and it extracts a mesh which is topologi-
cally equivalent to the boundary between surface cells and
outer cells without requiring additional inside/outside infor-
mation.

What remains to be done is the computation of a surface
sample in each cell. For this we use the minimum distance
information d = minDist, p = minPoint, and n = minNor-
mal and set up the plane equation

n’x = nTp +d8—d

which represents the tangent plane of M shifted by 8. This
is the best planar approximation to the offset surface within
the current cell. We define a surface sample by projecting the
center c of the cell to that plane (see Fig.3), i.e.,

¢ =c+n (nT(p—c)—I—S—d)

If the assumption that the offset surface is locally smooth
(flat) does not hold, the sample ¢’ might actually not lie on
the offset surface (Fig.3). Furthermore the sample ¢’ might
even lie outside the cell (Fig.3). The samples computed out-
side the cell are simply clamped. These problems will be
taken care of later in the smoothing step (Section 6).

3.3. Volume Tiling

So far we implicitly assumed that the octree root cell is ini-
tialized as the bounding box of the offset surface, i.e. the

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.

Offset surface =——

~

p p p

Figure 3: 2D illustration for the computation of cell rep-
resentatives. p is the minimum distance point, n is the tan-
gent plane normal vector pointing to the corresponding base
point, ¢ is the cell-midpoint, and ¢’ is the resulting repre-
sentative (left). If the local smoothness assumption does not
hold, ¢’ is not guaranteed to actually lie on the offset surface
(middle). If the representative lies outside the cell (right), we
simply clamp the projection to the cell hull. A smoothing pro-
cedure will resolve these problems later (Section 6).

bounding box of the input mesh dilated by the offset dis-
tance §. However, for very large voxel resolutions, the size
of the data structure can quickly grow above the available
memory capacity — even if we apply adaptive refinement.

Y,
I X Deleted Tri.
— Boundary Vertex ®
Top View oundary
Cells:
- ? Z ] Tile A
e X [ Tile B
[J Overlap
O Side View

Figure 4: Removing the overlap between neighboring tiles.
The triangles lying in the overlapping area of the tile A are
removed while those of tile B remain. The boundary vertices
computed on both sides are simply snapped.

In order to significantly reduce the amount of information
that has to be stored simultaneously, we split the bounding
box into smaller tiles that can be processed independently
(sequentially or in parallel) by applying the algorithm of
Section 3.1 and 3.2 to each tile. The critical part then is to
guarantee that these independently generated offset meshes
can be merged into a proper manifold surface. This can be
achieved by defining the tiles such that they overlap by one
layer of voxels with their neighbor tiles and then discard
those output triangles that have been generated twice (s.
Fig.4). This overlap requirement implies that we cannot use
simply the cells of an intermediate octree level as tiles since
they do not overlap.

If we bound the maximum refinement level for the octree
data structure within each tile to £ and use a grid of n tiles,
we can effectively work on a ((2° —1)n+1)3 voxel grid.
For the identification of the double triangles we do not really
need to compare triangles. For each tile we simply discard all



Darko Pavi¢ & Leif Kobbelt / High-Resolution Volumetric Computation of Offset Surfaces with Feature Preservation

Figure 5: Volume tiling example. Left: The offset of the fan
model after volume tiling with 33 tiles (zoomed view of the
boundary corner where 4 tiles meet). Middle: after snapping
boundaries and decimation. Right: After final smoothing.

triangles whose three vertices all lie in the right, front, or top
layer of voxels. This asymmetric definition guarantees that
exactly one copy of each double triangle is removed. One
tiling example is shown in Fig.5.

4. Distance computation

The last missing functionality in the rasterization procedure,
is the actual distance computation. For each distance prim-
itive, i.e., sphere, cylinder, and prism, we have to compute
the minimum and maximum distance with respect to a given
cell. Here we can take advantage of several nice properties
of distance fields. Moreover, from a certain octree level on,
the primitives are guaranteed to be located outside the cells
through which the offset surface passes. This allows us to
apply efficient classification techniques known from poly-
gon clipping in order to determine whether the minimum
distance is taken on at a face, edge, or corner of the cell.

For the distance field of a (weakly) convex object, all iso-
contours are (weakly) convex, too. Hence, if we restrict the
spatial distance field to a planar polygon, the maximum dis-
tance value is always obtained at one of the corner vertices.
If we apply this observation to the six sides of a cubical cell,
it follows that the maximum distance within a cell is always
obtained at one of the corners. Since we are processing just
spheres, cylinders, and prisms, which are all weakly convex,
this observation applies in our case.

For the minimum distance within a cell it is in general
not sufficient to check the distance at the corners since the
minimum can be obtained in the interior of one of the edges
or faces, too. However, since the iso-contours of the distance
field to a polygonal mesh can be decomposed into planar,
cylindrical, and spherical regions there is usually just a finite
number of different relative constellations that needs to be
checked.

In the following let C be the cell to be checked. It has
eight corners ¢, . ..cg, twelve edges e, . ..e 3, and six sides
S1,...8¢. Notice that the edges and sides are parallel to the
coordinate axes, which makes distance computations signif-
icantly easier since some of the vector entries vanish.

4.1. SPHERE distance function

For a given vertex position V we want to estimate minimum
and maximum distance of this vertex from the cell C.

For the minimum distance we first have to determine
whether this minimum is obtained at a corner, edge, or side
of the cell. Let Sy, ...Sg be the supporting planes of the cell
sides s1,. ..Sg, oriented such that the cell lies in the intersec-
tion of the negative half-spaces. By checking the vertex V
with respect to the six supporting planes, we generate a Six
digit binary number from which we can conclude directly
on which corner, edge, or side the minimum distance is ob-
tained. If V happens to lie in the interior of the cell (binary
code 000000), the minimum distance is set to zero.

The same binary code can be used to determine, which
corners are candidates for the maximum distance. If the min-
imum distance is obtained at a side of the cell, we have to
check the four corners of the opposite side. If the minimum
lies on an edge, the candidates for the maximum distance
are the corners of the opposite edge. Finally in case the min-
imum distance occurs at a corner the maximum is obtained
at the opposite corner. The binary code 000000 implies that
all eight corners have to be checked.

We store the binary code as a vertex attribute and re-use it
when the incident edges and faces are processed.

4.2. CYLINDER distance function

An edge E with endpoints a and b defines a cylindrical
distance field which is valid in the region between the two
planes with normal vector e = a — b passing through a and
b respectively. Hence we first check if the cell intersects this
region. Otherwise no further computation is needed since
minimum and maximum distance have already been deter-
mined correctly based on the edge’s endpoints.

In case the cell intersects the cylinder region, we next
check if the edge E is intersecting the cell by using the
3D version of the Liang-Barsky line clipping algorithm
[FvDFHO0]. If this is the case, the minimum distance is set
to zero. Otherwise, the binary codes computed and stored
for the two endpoints a and b can be used to quickly de-
termine the relative constellation of E and C. We multiply
the binary codes of a and b digit by digit (logical “and”).
If the resulting binary code does not vanish we can again
restrict the distance computation to one side (including its
four boundary edges and corners), one edge (including its
endpoints), or one vertex of the cell. From a certain octree
level on (i.e. when the cell size is less than the offset dis-
tance J), the edge E is most likely to lie outside of the cell
and hence the probability for a constellation, which allows
for simplified calculations, is very high.

In order to compute the minimum and maximum distances
for the cell, we have to compute distances between E and
either some of the sides, edges or corners of the cell.

The distance between E and a corner ¢; can be computed

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.



Darko Pavi¢ & Leif Kobbelt / High-Resolution Volumetric Computation of Offset Surfaces with Feature Preservation

by solving a quadratic equation. If the nearest point on the
supporting line of E to ¢; does not lie in the interior of E,
we compute the distances between ¢; and the endpoints of £
instead [SE03].

While edge-to-corner distances are needed for the mini-
mum and the maximum, edge-to-edge and edge-to-side dis-
tances are only necessary to compute the minimum distance.

The distance between E and an edge e; is computed by
solving a 2 x 2 system. Again the minimum distance be-
tween the respective supporting lines is only valid if the cor-
responding nearest points are actually lying on E and e; re-
spectively. Otherwise, we fall back to the edge-to-vertex or
even vertex-to-vertex distance computation.

Finally, the distance between E and a side s is obtained
by the minimum of the two endpoint’s distances to the sup-
porting plane of s;. However these distances are only valid if
the orthogonal projection of the endpoints lies in the interior
of s;. If one of the vertex-to-plane distances is invalid, we
don’t have to do any further computations since we can sub-
stitute it by the corresponding edge-to-edge distance (com-
puted previously).

Notice that for the sake of simplicity and efficiency we are
computing the distances between E and the complete cell
C, not only the part of C that falls into the valid cylinder
region. Even if this causes redundant computations, it turns
out that these computations are less expensive than clipping
of the cell C at the two bounding planes and computing the
distances to the clipping polygon.

4.3. PRISM distance function

A triangle F' and its normal vector span an infinite triangle
prism (ITP). We start by checking if the cell C intersects this
prism. If this is not the case we can skip any further compu-
tation since the distance estimates have already been com-
puted in the spherical or cylindrical distance function. Next
we check if F intersects the cell in which case the minimum
distance is set to zero.

Again, we use the binary codes stored at the vertices and

multiply them digit by digit to obtain a six digit binary code

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.

(a) (b)
Figure 6: Feature reconstruction on the inner offset of a cube. In (a) we see one of the corners of the extracted offset surface
from inside (feature faces are green). (b) shows the same part after the insertion of feature vertices and (c) after the edge
[fipping (features now shown in red). As explained in Section 3.2 (see also Fig.3), the cell representatives do not necessarily lie
on the offset surface in the vicinity of a non-smooth feature. (d) shows the offset surface from outside. By mesh smoothing, these
outliers can be pulled back (see Section 6) to the correct offset surface (e).

(e)

for F. This code determines the relative spatial constella-
tion and allows us to identify the sides, edges, and corners to
which the distance function has to be evaluated.

The distance between a corner and the triangle F' is com-
puted by the standard procedure described in [SE03]. Within
the ITP, the distance field is just the linear distance field to
a plane. Hence for polygons the extremal distances are al-
ways obtained on the boundary and for edges the extremal
distances are obtained at the endpoints. We exploit this ob-
servation by computing the intersections of the relevant cell
edges e; with the sides of the prism and the intersections of
the prism edges with the relevant sides of the cell. Minimum
and maximum distances are then computed as the minimum
and maximum among the point-to-plane distances between
the supporting plane of F' and the set of points (intersection
points and cell corner points).

5. Feature Reconstruction

In this section we explain how our initial offset surface can
be improved by adding feature information (see also Fig.6).
In an offsetting operation sharp features (shocks) are caused
by concave regions when the offset distance is larger than the
concave radius of curvature. We reconstruct these features in
three steps.

Detecting feature faces The normal in each vertex v of the
reconstructed offset surface (these are the cell representa-
tives computed in Section 3.2), is the corresponding min-
Normal computed in Section 3.1 We define a face to be a
feature face if the maximum angle between two of these
vertex normals is above a prescribed threshold ¢. The
choice of this threshold is not critical since setting it too
low will only cause false positive feature detections which
do not compromise the quality of the resulting surface.

Subdivision Each vertex of a feature triangle defines with
its normal vector a tangent plane. A good sample point on
the sharp feature can therefore be computed by intersect-
ing these tangent planes [KBSSO1]. The linear system

nox Moy Nog Vx dy
nyx Ny Nz vy | =1 di
nyx Moy Mo vz dp



Darko Pavi¢ & Leif Kobbelt / High-Resolution Volumetric Computation of Offset Surfaces with Feature Preservation

characterizing the intersection point has to be solved by
singular value decomposition since along smooth feature
curves, the matrix can become singular. In this case the
SVD pseudo inverse will compute the least norm solution.
This is why we have to shift the voxel center to the origin
before we set up the plane equations.

Flipping and alignment The feature samples lie on the fea-
ture, but the mesh connectivity does not yet properly rep-
resent the feature curve as a polygon of mesh edges. In
order to achieve this, we have to flip edges that cross the
feature curve [KBSSO1]. Hence we make a pass over all
mesh edges and flip them if (1) after the flip, this edge
connects two feature vertices and (2) the angle between
the normal vectors at the two endpoints before the flip is
above the threshold ¢ for the feature detection (see Fig.6).

6. Smoothing

The last step in our offset surface computation is a smooth-
ing operation, which is necessary because the computed cell
representatives are not guaranteed to lie exactly on the offset
surface as shown in Fig.3 and Fig.6(d). Our smoothing oper-
ator uses two forces: The relaxation force moves the vertex
towards the center of gravity of its 1-ring neighbors and the
offset force pulls the feature vertex to the offset surface.

Let v be a vertex and vy, ... vy its one-ring neighborhood.
In order to efficiently find the base point b on M having the
minimum distance to v, we have to build a spatial search data
structure. Here, we cannot use the octree from the rasteriza-
tion phase since it represents only a single volume tile while
smoothing is applied to the entire object as a final step (see
Section 7). Hence, for simplicity and efficiency we build a
kd-tree for the complete input mesh M. Then the relaxation
force is pulling v towards v’ while the offset force is pulling
v towards v'':

/ 1 1 v—b
v nzi:v, v b+8||v—b||'

The smoothing operator moves each vertex to a weighted
average of the two target points, i.e., v« (1 — o) v/ +av”.
In this smoothing operator the relaxation force is effectively
avoiding triangle flips. Fig.6 and Fig. 7 show the effect of
the smoothing operation. In our current implementation we
are using o0 = 0.5.

For feature vertices, we only consider 1-ring neighbors
which are feature vertices themselves to compute the relax-
ation force. A feature vertex with just one or more than two
feature vertex neighbors is considered a corner vertex and is
not smoothed at all.

7. Scalability

In order to be able to use very high voxel resolutions, we al-
ready introduced the volume tiling technique in Section 3.3.
However, not only the growing size of the octree data struc-
ture is critical but also the growing complexity of the output
mesh. Hence we need to apply mesh decimation [GGKO02]

4

Figure 7: Left: input model blended with the offset sur-
face. Middle: error visualization on the initially extracted
offset surface. Right: error visualization after feature ex-
traction and smoothing. The errors are color-coded on the
scale [—0.5%3..0..0.5%38] with colors [green..blue..red] and
8 = 2% (of the bounding box diagonal).

to avoid redundant over-tesselation in flat regions of the
offset surface. Obviously we have to guarantee consistency
between the surface patches corresponding to neighboring
tiles. Hence we block the boundary vertices of each sub-
mesh from being decimated. The same applies to features:
they are excluded from the decimation to make sure that fea-
tures are preserved across tiles.

The overall offset generation procedure then is as fol-
lows (see Fig.5): The bounding box is split into overlapping
tiles. For each tile we perform the hierarchical distance field
computation and mesh extraction (Section 3). Then we dis-
card the triangles from the right, front, and top layers (sec-
tion 3.3). Next we perform the feature detection (Section
5) and label all vertices belonging to a feature face as well
as all boundary vertices as passive. To the remaining active
vertices we apply an incremental mesh decimation scheme
like [Hop96].

After we have processed all tiles, we merge the sub-
meshes into one single mesh, which is trivial since we did
not change their boundaries. Then we apply the feature re-
construction (subdivision and flipping, see Section 5) and
finally apply a concluding decimation step which now also
removes former boundary vertices. Features can easily be
preserved by enabling edge collapses only between two fea-
ture vertices or two non-feature vertices but never between
a feature and a non-feature vertex. As a final step we apply
our smoothing procedure described in Section 6.

8. Results & Discussion

All our experiments are performed on a commodity PC
(AMD64 2.2GHz with 4GB RAM). In Fig.9 we show a se-
lection of offset surfaces for some challenging input meshes
created by our method. In the lighthouse example we see that
even the finest detail like the antenna and the handrail are
preserved when computing the offset surface. With the Part
model, which contains many degenerate triangles and incon-

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.



Darko Pavi¢ & Leif Kobbelt / High-Resolution Volumetric Computation of Offset Surfaces with Feature Preservation

input model voxel-res. tiling  offset total time  offsettime dec.time max. tiletime #faces memory peak
Cogwheel 2KA) 603 13(64°) 2% 1.9s 1.7s - - 12K 2MB
Cogwheel 2KA) 1213 13(1283%) 2% 3.65 3s - - 66K 4MB
Buddah(IMA) 4783 43(128%) 2% 3100s 2400s 50s 168s 210K 43MB
Fan(13KA) 8645 4°(256°) 1.6% 450s 124s 265s 41s 154K 59MB
Fan(13KA) 9043  43(256°) 3.2% 458s 140s 258s 38s 152K 55MB
Lighthouse(3KA) 3223 4%(128%)  1.1% 63s 19s 32s 10s 121K 17MB
Lighthouse(3KA) 3323 43(128%)  22% 62s 20s 32s 9s 100K 16MB
Part(9KA\) 5070 4%(128%)  1.3% 109s 565 39s 155 150K 17MB
Part(9KA) 2008  43(512%)  1.3% 1100s 280s 680s 166s 574K 203MB

Table 1: Timings and memory requirements for the examples shown in Fig.8 and 9. The columns show the effective voxel
resultion, the tiling pattern and the offset distance 8. Besides the total computation time we also give the timings for the actual
offset computation and the decimation (both included in the total time). The number of faces shows the output mesh complexity
for both, inner plus outer offset after merging, feature reconstruction, decimation, and smoothing.

offset (in %) 1 2 4 8 12 16 20
time (in s) 37 4 51 o6l 67 82 96
mem. (inMB) 47 50 60 74 90 108 129
input (in K) 5 10 20 40 60 80 100
time (in s) 17 28 44 74 102 132 167

mem. (inMB) 42 45 50 58 66 74 82

Table 2: Statistics for some experiments with the Dragon
model at various offset distances and input mesh resolutions.
Fig. 7 shows the results for the test in bold (2%, 20KA\).
Time and memory, grow proportionally to the input mesh
complexity (lower part). For varying offset distances, time
and memory depend on the offset surface area (upper part).

sistencies, we demonstrate the robustness of our method. It
can deal with all kinds of artifacts and still produces consis-
tent and water-tight output. We depict inner offsets as well
to show how reliable the feature reconstruction works.

Some statistics for the examples from Fig.9 and Fig.8 can
be found in Table 1. In order to provide an accurate eval-
uation, the voxel resolution describes the size of the tight
bounding box of the resulting offset surface. The voxel-
resolution of the individual tiles is given in the brackets
of the "tiling"-column. The total running time depends on
the input complexity and the voxel resolution. The timings
for the two most time consuming steps, namely octree gen-
eration and offset mesh decimation, are given in separate
columns. The memory column in the table shows the peak of
the memory footprint during the computation. Since our vol-
ume tiling technique allows for parallel processing of tiles,
when using a PC cluster with sufficiently many machines the
total running time reduces to the one of the most complex
tile. These timings are given in the "max. tile time"-column.

In Fig.8 we present an example of a morphological open-
ing operation. For this we compute an inner offset to the
original Bunny model (erosion) and then an outer offset to
the inner offset (dilation). This computation took 90s and
the final mesh has 90K faces. The complexity of the Cog-
wheel model is comparable to those models used for offset-
ting by Varadhan et al. [VMO04]. The timings in Table 1 show
that our method is about one order of magnitude faster. With

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.

&

Figure 8: Left to right: Bunny model (70K) after a mor-
phological opening operation with & = 3% (thin parts like
the ears are removed), the Cogwheel with two offset-views
(8 =2%) and the Buddah with its offset (8 = 2%).

the Buddah model (1M faces) we show that our method per-
forms well also for large input meshes.

In Table 2 we show how the offsetting distance and the
input complexity affect the memory and running time of our
method performed for the Dragon model from Fig.7.

9. Limitations & Future Work

Although our method performs well in general, there are
some problems left to solve. The feature extraction is still
problematic in strongly concave regions, i.e. if there are too
strong (close to m) normal deviations between the corre-
sponding input faces of a feature line. Our feature extrac-
tion method could be applied in the context of other methods
which are based on volumetric representations and therefore
suffer from typical resampling artifacts. Examples are gen-
eral iso-surface extraction, mesh repair, etc. For many appli-
cations only an approximation of the offset surface could be
sufficient. Hence, we would also like to find a way to sim-
plify our computations and so enable interactive offsetting at
the expense of accuracy.

References

[BM99] BREEN D. E., MAUCH S.: Generating shaded offset surfaces with distance,
closest-point and color voumes. In Proceedings of the International Workshop on Vol-
ume Graphics (1999), pp. 307-320.

[BMWO98] BREEN D. E., MAUCH S., WHITAKER R. T.: 3d scan conversion of csg
models into distance volumes. In VVS '98: Proceedings of the 1998 IEEE symposium
on Volume visualization (New York, NY, USA, 1998), ACM Press, pp. 7-14.



Darko Pavi¢ & Leif Kobbelt / High-Resolution Volumetric Computation of Offset Surfaces with Feature Preservation

Fan (13K

Outer (52K)

Outer (75K)

EWA

Inner (102K)

=
6=13%
Outer (267K) Inner (280K)

632%»

Inner (92K)

Outer (60K)

Inner (46K)

Outer (70K) Inner (30K)

Figure 9: Offset surfaces generated by our algorithm for a number of challenging technical examples. Since we use the unsigned
distance function, both the inner and outer offsets are extracted. Timings and other quantities are given in Table 1 for both parts
together. The offset & is given in percent of the corresponding bounding box diagonal. On the left the tiling boundaries are

visualized on the input model.

[BPKO5] BISCHOFF S., PAVIC D., KOBBELT L.: Automatic restoration of polygon
models. ACM Trans. Graph. 24, 4 (2005), 1332-1352.

[CVM*96] COHEN J., VARSHNEY A., MANOCHA D., TURK G., WEBER H., AGAR-
WAL P., BROOKS F., WRIGHT W.: Simplification envelopes. In Proc. ACM SIG-
GRAPH (1996), pp. 119-128.

[CWRRO05a] CHEN Y., WANG H., ROSEN D. W., ROSSIGNAC J.: Filleting and round-
ing using a point-based method. In DETC’05 Proceedings (2005).

[CWRRO5b] CHEN Y., WANG H., ROSEN D. W., ROSSIGNAC J.: A Point-Based Off-
setting Method of Polygonal Meshes. Tech. rep., 2005.

[For95] FORSYTH M.: Shelling and offsetting bodies. In Proc. of the ACM Symp. on
Solid Modeling and Applications (1995).

[FPRJO0]  FRISKEN S. F., PERRY R. N., ROCKWOOD A. P., JONES T. R.: Adaptively
sampled distance fields: a general representation of shape for computer graphics. In
Proc. of ACM SIGGRAPH (2000), pp. 249-254.

[FVDFH90] FOLEY J., VAN DAM A., FEINER S., HUGHES J.: Computer Graphics
Principles and Practice. Addison-Wesley, 1990.

[GGK02] GOTSMAN C., GUMHOLD S., KOBBELT L.: Simplification and compression
of 3d-meshes. In Tutorials on Multiresolution in Geometric Modelling. Springer, 2002.

[GWO1] GONZzALEZ R. C., WoODS R. E.: Digital Image Processing. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[GZ95] GURBUZ A. Z., ZEID 1.: Offsetting operations via closed ball approximation.
CAD 27, 11 (1995), 805-810.

[HC02] HUANG J., CRAWFIS R.: Adaptively represented complete distance fields. Ge-
ometric Modeling for Scientific Visualization (2002).

[HLC*01] HUANGIJ., L1Y., CRAWFIS R., LUS. C., LIOU S. Y.: A complete distance
field representation. In VIS '01: Proceedings of the conference on Visualization *01
(2001), pp. 247-254.

[Hop96] HOPPE H.: Progressive meshes. In ACM SIGGRAPH (New York, NY, USA,
1996), ACM Press, pp. 99-108.

[JLSW02] Ju T., LOSASSO F., SCHAEFER S., WARREN J.: Dual contouring of hermite
data. In Proc. of ACM SIGGRAPH (2002), pp. 339-346.

[KBSSO1] KOBBELT L. P., BOTSCH M., SCHWANECKE U., SEIDEL H.-P.: Feature
sensitive surface extraction from volume data. In SIGGRAPH (2001), pp. 57-66.

[MS00] MCMAINS S., SMITH J.: Layered manufacturing of thin-walled parts. In
ASME Design Engineering Technical Conference, Baltimore, Maryland. (2000).

[OF02] OSHER S. J., FEDKIW R. P.: Level Set Methods and Dynamic Implicit Surfaces.
Springer, 2002.

[QS03] QU X., STUCKER B.: A 3d surface offset method for stl-format models. Rapid
Prototyping Journal 9, 3 (2003), 133-141.

[QZS*04] QU H., ZHANG N., SHAO R., KAUFMAN A., MUELLER K.: Feature pre-
serving distance fields. In VV '04: Symposium on Volume Visualization and Graphics
(2004), pp. 39-46.

[RR85] ROSSIGNAC J. R., REQUICHA A. A. G.: Offsetting operations in solid mod-
elling. Comput. Aided Geom. Des. 3,2 (1985), 129-148.

[SE03] SCHNEIDER P. J., EBERLY D. H.: Geometric Tools for Computer Graphics.
Morgan Kaufmann Publishers, 2003.

[Ser83]  SERRA J.: Image Analysis and Mathematical Morphology. Academic Press,
Inc., 1983.

[Set99]  SETHIAN J. A.: Level Set Methods and Fast Marching Methods. Cambridge
University Press, 1999.

[VKKMO03] VARADHAN G., KRISHNAN S., KiM Y. J., MANOCHA D.: Feature-
sensitive subdivision and isosurface reconstruction. In Proc. of the IEEE Vis. (2003).

[VKSMO04] VARADHAN G., KRISHNAN S., SRIRAM T., MANOCHA D.: Topology
preserving surface extraction using adaptive subdivision. In Proc. of the Eurographics
Symp. on Geometry Processing (2004), pp. 235-244.

[VM04] VARADHAN G., MANOCHA D.: Accurate minkowski sum approximation of
polyhedral models. In Proc. of Pacific Graphics Conf. (2004), pp. 392-401.

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.



