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Abstract

In this paper, we present a semi-automatic approach to ef�ciently
and robustly recover the characteristic feature curves of a given
free-form surface. The technique supports a sketch-based interface
where the user just has to roughly sketch the location of a feature by
drawing a stroke directly on the input mesh. The system then snaps
this initial curve to the correct position based on a graph-cut opti-
mization scheme that takes various surface properties into account.
Additional position constraints can be placed and modi�ed manu-
ally which allows for an interactive feature curve editing function-
ality. We demonstrate the usefulness of our technique by applying
it to a practical problem scenario in reverse engineering. Here, we
consider the problem of generating a statistical (PCA) shape model
for car bodies. The crucial step is to establish proper feature cor-
respondences between a large number of input models. Due to the
signi�cant shape variation, fully automatic techniques are doomed
to failure. With our simple and effective feature curve recovery tool,
we can quickly sketch a set of characteristic features on each input
model which establishes the correspondence to a pre-de�ned tem-
plate mesh and thus allows us to generate the shape model. Finally,
we can use the feature curves and the shape model to implement an
intuitive modeling metaphor to explore the shape space spanned by
the input models.

CR Categories: I.3.5 [Computational Geometry and Object Mod-
eling]: Geometric algorithms, languages, and systems

Keywords: Feature extraction, sketch-based interfaces, surface
registration, statistical shape model

1 Introduction

In this work, we address the problem of recovering smooth feature
curves from free-form surfaces. We do not impose any simplify-
ing assumptions on the characteristics of the input surfaces. This
would either restrict the applicability of our method to surfaces that
ful�ll these assumptions or require a faithful and expensive mesh
repair prior to processing them with our method. Unrestricted input
exhibits a variety of challenging characteristics: An input model is
a triangle or general poly mesh, which is not required to be wa-
tertight or manifold, let alone genus zero. It supposedly consists
of a large number of surface patches which intersect arbitrarily or
contain gaps in between each other. In general, a model can include
much geometric detail which imposes dif�culties on the recovery of
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smooth curves as well as arbitrary geometric structure in its interior.
Furthermore, we do not require a consistent normal orientation.

The output of our system are B-spline curves which smoothly ap-
proximate the features of the input model. Due to the complexity
of the input data, fully automatic approaches for feature recovery
are doomed to failure. Furthermore, the aesthetic question of what
a feature actually is and hence what a method should be able to
recover cannot be modeled mathematically. However, our system
provides maximal user-support in recovering what he consideres a
feature. Finally, the extraction of the same set of feature curves
from several input models allows for the computation of a statisti-
cal shape model. The shape space spanned by the input models can
then be explored intuitively using the feature curves.

Recovering features from free-form surfaces is an intensively inves-
tigated �eld in Computer Graphics and CAGD. A closed network
of feature curves allows for the segmentation of an input model
into meaningful subparts which is a key issue for many further ap-
plications on meshes such as parameterization, morphing, match-
ing, registration, or compression. There exist a large number of
mesh segmentation methods, automatic as well as semi-automatic
approaches, which incorporate some user-interactivity. Providing
a detailed survey on mesh segmentation is beyond the scope of
this work. However, one can roughly classify existing methods
into two classes: The �rst class tries to identify meaningful regions
and then re�ne the borders separating them. There exists a variety
of approaches in the literature which make use of watershed seg-
mentation [Mangan and Whitaker 1999], clustering [Katz and Tal
2003], [Lai et al. 2006], [Shlafman et al. 2002], region growing [Ji
et al. 2006], or random walks [Lai et al. 2008] to group similar
mesh elements into meaningful regions. Fitting of geometric prim-
itives (e.g. [Attene et al. 2006], [Wu and Kobbelt 2005]) is suitable
for decomposing models of mechanical parts in reverse engineer-
ing applications. The second class of segmentation methods aims
at the identi�cation of segment borders which implicitly de�ne the
segment regions. To extract meaningful patches, one usually wants
to align the borders to mesh features. However, depending on the
application, the de�nition of a feature varies. Graphical models on
the one hand impose different requirements than engineering ob-
jects or CAD models on the other hand. For the �rst type of objects,
the goal is to split it into meaningful parts. From cognitive the-
ory [Hoffman and Richards 1985], we know that human perception
divides an object along signi�cant concave features, widely referred
to as the minima rule. For objects of the latter type, one mostly
aims at segmenting the model into parts which can be �tted with
some analytical surface and hence in many cases the minima rule is
not suitable for identifying the borders. Therefore, several methods
make use of snakes [Lee and Lee 2002], [Lee et al. 2004], [Lee
et al. 2005] to identify features in a mesh, since an energy func-
tional can be adapted to the application-dependent de�nition of a
feature. However, a drawback of snake-based feature extraction is
their restriction to detect local minima, only. Once a snake settled
to its �nal (locally optimal) position, it needs to be detached man-
ually to recover the global optimum. In [Katz and Tal 2003] graph
cuts (e.g. [Cormen et al. 2001]) were used to automatically de�ne
segment boundaries. However, they apply the graph cut to re�ne
an initial segment boundary within a transition region derived from
fuzzy clustering.



Approaches which automatically recover global features from
surface meshes [Hildebrandt et al. 2005], [Ohtake et al.
2004], [Yoshizawa et al. 2005] require the computation of
higher-order surface derivatives thus imposing limitations (2-mani-
foldness) on the type of meshes which can be processed. Further-
more, careful parameter tuning may be necessary since automatic
feature extraction is based on heuristics which might recover in-
signi�cant parts. [Hubeli and Gross 2001] require the user to pro-
vide a few control parameters and operators to be applied to the
input surface and hence are calling for a skillful user.

In recent years a lot of research has been spent on sketch-based
interfaces. The user draws some strokes on a 2D canvas from
which the system e.g. creates smooth three dimensional surfaces
(e.g. [Igarashi et al. 1999], [Karpenko and Hughes 2006], [Nealen
et al. 2007], [Zimmermann et al. 2007]). Since human percep-
tion recognizes the shape of an object by its main characteris-
tics, [Nealen et al. 2007] consider the sketched curves as features of
the resulting model and further exploit them for surface modeling.

The incorporation of user assistance into the task of mesh segmen-
tation greatly supports the detection of salient features which are
consistent with human shape perception. [Ji et al. 2006] let the user
quickly draw some freehand strokes on an input model marking
subparts of interest. A region growing algorithm then extracts the
segment boundaries which are �nally smoothed using snakes. Fur-
thermore, the user can manipulate the resulting boundaries by drag-
ging them over the surface, inserting and deleting vertices and pro-
viding freehand strokes for the replacement of boundary segments.
Especially the last metaphor greatly captures human intuition.

2 Overview

Unlike the methods described in the last section, the input to our
method can be arbitrary without imposing any consistency require-
ments. The fundamental idea of our work is the transformation
of arbitrary input into a regular intermediate structure which then
allows for an evaluation of the surface characteristics. Since gen-
eral mesh repair is too expensive, we reconstruct the missing struc-
tural information locally. By the use of a “�shbone structure” (cf.
Sec. 4.3.1) we are able to reduce the reconstruction problem from
3D surfaces to two 2D curves.

Since an input model may consist of a large number of surface
patches, a feature curve may have to span over several patches.
Furthermore, when the position of a curve is optimized it is also
likely that it leaves one patch and moves onto a neighboring patch.
Since the input model is possibly non-manifold, the de�nition of a
patch neighboorhood is ambiguous and hence we cannot compute
geodesic paths on the input model. Instead, the local structural in-
formation provided by the �shbone is used for curve optimization
on the surface.

Most existing methods align the feature lines to edges of the input
model. Since mesh faces in CAD models often vary largely in scale,
the resulting boundary may suffer from artifacts caused by the poor
mesh tessellation. In contrast, our system generates smooth curves
which follow feature regions of the input model regardless of the
underlying tessellation.

Our system provides an intuitive sketch-based user interface that
supports the user in recovering smooth feature curves from highly
complex free-form surfaces, where automatic approaches cannotbe
applied. A graph-cut based algorithm optimizes a curve subject to
various surface properties thereby guaranteeing to �nd the global
optimum. We demonstrate the usefulness of our system by applying
it to the problem of generating a statistical (PCA) shape model for
car bodies, a class of models which exhibit large variance in shape.

By recovering the same set of feature curves from each model, we
are able to establish proper feature correspondences. The registra-
tion of a template mesh to each input model is guided by the fea-
ture network and �nally allows us to generate the morphable shape
model. We further exploit the feature curves as an intuitive mod-
eling metaphor for exploring the shape space spanned by the input
models.

3 User Interaction

The user starts an interactive modeling session by loading an input
model into our system. The interface allows for intuitive navigation
in 3D space such that the model can be inspected from arbitrary
viewpoints.

To create a new curve, the user roughly places some points in a re-
gion of interest on the input mesh from which the system automati-
cally computes an initial curve. Our system supports the user in the
task of recovering features from the input model by automatically
“snapping“ the sketch curve to regions of the most likely feature
location. A graph cut based optimization process shifts the curve
to regions of maximum curvature or certain surface normal orien-
tations, thereby satisfying smoothness requirements. The user can
adjust the relative weighting of the optimization objectives using a
slider and scale the stiffness of the feature curve.

In case the user is not yet satis�ed with the optimized curve, he
can impose positional constraints by pulling the curve over the in-
put surface. When he clicks on a curve and moves the mouse, the
displacement is computed in screen space. The curve's new 3D po-
sition is obtained by reprojecting the screen positions back onto
the surface. We prefer the computation of the displacements in
screen space over their computation on the 3D surface itself us-
ing geodesic distances because it allows for a more intuitive con-
trol of curve behavior. Furthermore, the computation of geodesic
paths on meshes exhibiting the characteristics described above is
not straightforward. In contrast, reprojecting screen positions back
onto the mesh is always possible regardless of any mesh inconsis-
tencies.

The optimization criteria as well as positional constraints for se-
lected points on the curve can be modi�ed by the user interactively.
The feature curve then automatically adopts itself to the new con-
straints in real time providing direct feedback for the user. We hide
any technical details of the underlying algorithms such as speci�c
parameters from the user. This makes our system easily usable for
experts as well as inexperienced users.

Features are characterteristic curves which describe the essential
properties of a surface. Once these curves are recovered, they can
be manipulated and hence allow for interactive surface modeling
(cf. Sec. 5).

Please refer to the accompanying video for a demonstration of our
interface and an example on surface modeling using feature curves.

4 Implementation

In order to ensure high geometric quality, all curves created in an
interactive modeling session are B-spline curves

c(t) =
nX

i =0

di � N p
i (t):

The number of control pointsdi is chosen proportionally to the
length of the curve andN p

i (t) are B-spline basis functions. By
default, we set the curve's degreep to three, although the system is
not restricted to cubic curves.



Figure 1: A �shbone structure on a model of a car: For each
surface sample (green dots) a manifold rip polygon (blue) is con-
structed which is orthogonal to the approximating curve (red).

4.1 Initial Curve Generation

Given a set of surface points sketched by the user, our system gen-
erates an initial curve by interpolation. To increase resolution, the
resulting curve is sampled at equidistant locations and the samples
are projected onto the closest point on the input mesh. In the fol-
lowing, we refer to these projected curve points as surface samples
S = f s0 ; : : : ; sm � 1g. A curvec(t) embedded in the surface is then
obtained by computing a chordal parameterization of the samples
si as well as a knotvectorU = f u0 ; : : : ; un + p+1 g that respects the
distribution of the parameters [Piegl and Tiller 1995]. We approxi-
mate the surface samplessi in the least squares sense such that

E (c) =
m � 1X

i =0

ksi � c(t i )k
2

is minimized. Since later some samplessj describe positional con-
straints imposed by the user, they are required to be interpolated
exactly. Hence, a constrained least squares approximation is for-
mulated by augmenting the approximation componentN � C = A
with interpolation constraintsM � C = B . Here,N andM are
matrices of B-spline basis functions,C are the unknown control
points,A the sample positions one wants to approximate andB are
the samples to interpolate. We minimize the sum of the errors in the
approximation component subject to the interpolation constraints
using Lagrange multipliers [Piegl and Tiller 1995] and improve the
�t using classical parameter correction [Hoschek 1988]. Note, that
since we compute an approximation of thesi , the resulting curve
is not exactly embedded and thec(t i ) do not necessarily lie on the
surface, except for the interpolation constraints.

4.2 Curve Dragging

To pull a curve over the input surface, the user clicks on the curve
and the system computes the closest surface samplesc . To allow for
intuitive modeling, we compute the displacement in screen space.
We therefore projectsc into the image plane and translate it by a
displacement de�ned by the movement of the mouse on the screen.
The new positions0

c is obtained by reprojecting the screen position
back onto the mesh, which then induces an additional interpolation
constraint to the subsequent approximation.

4.3 Feature Curve Optimization

In order to treat all different types of surface quality constraints in
a uniform manner, we do not optimize a curvec(t) itself on the
surface. Instead, we optimize the positions of the surface samples
si which are then approximated byc(t). Allowing the samples to

Figure 2: A slice through an input model. Surface patches inter-
sect arbitrarily, hence a purely geometric repair algorithm is prone
to failure. The image on the right shows a close-up of the area
enclosed by the red box in the left image.

move freely on the surface during optimization would lead to clus-
tering in surface areas which best meet the optimization criteria.
We therefore restrict their trajectories to paths perpendicular to the
approximating curve. On the one hand, this ensures that surface
samples maintain a certain distance to each other and hence the
generation of clusters is avoided. On the other hand, it allows for
easy local curve resampling in the case that the sampling density
falls below or exceeds certain density thresholds.

4.3.1 Fishbone Structure

We use a �shbone structure as proposed by [Botsch and Kobbelt
2001], to de�ne the trajectories along which the surface samples
si are allowed to move during the curve optimization. The feature
curvec(t) thereby forms the backbone while rib curves are created
as follows (cf. Fig. 1). Sincec(t) approximates a set ofm surface
samplesS = f s0 ; :::; sm � 1g, there exists a curve parametert i for
each samplesi . At eachc(t i ) we de�ne a rib by a plane orthogonal
to the curve, i.e. its normal equals the curve's tangent atc(t i ). In-
tersecting the input mesh with a rib plane traces out a set of edges
which need to be joined to form a contour polygon. In the follow-
ing section, we describe our rasterization-based algorithm for 2D
manifold repair in detail. A complete �shbone structure is �nally
obtained by reconstruction a manifold contour polygon for each rib.
Fig. 1 shows a �shbone for a curve on a car's roof.

Notice that the planarity property of the �shbone ribs allows us to
perform all following computations in a 2D plane which renders
the task of creating manifolds considerably simpler compared to
3D mesh repair (see e.g. [Bischoff et al. 2005]). To accelerate the
construction of the polygons, we reduce the search space by dis-
carding all intersections of a rib plane with the input model that do
not lie within a circle with a prede�ned radius around the backbone.
Rejecting intersections outside a certain region is feasible since we
assume the curve to be sketched in a region of interest and hence
it is not supposed to change its location by more than a certain dis-
tance.

4.3.2 Rasterization-based manifold reconstruction

Intersecting the unstructured input model with a plane �rst creates
an unordered set of edges. Since we do not require the input mesh to
be watertight, it may consist of several unconnected surface patches
that intersect arbitrarily and hence a manifold polygon represent-
ing the contour cannot be reconstructed in a simple mesh traversal.
However, we can combine the unordered edge set to a set of uncon-
nected polygonal segments by traversing each intersected surface
patch separately and connecting its intersection edges to a manifold
polygonal segment. What remains is the connection of the resulting



(a) (b) (c)

Figure 3: Manifold extraction: Our algorithm gains topology in-
formation for the reconstruction of a contour in an image traversal
(a). Identifying the correct intersections of grid edges with polygon
edges (b) allows for the construction of a manifold contour poly-
gon (c) from a set of arbitrarily intersecting polygonal segments
(red, green, blue).

segments to a single manifold contour polygon that interpolates the
outer silhouette. In a simple and purely geometric approach, polyg-
onal segments are merged to a manifold contour by concatenating
them at coinciding endpoints. However, since surface patches may
intersect arbitrarily, this also holds for the segments (cf. Fig. 2).
Hence, the segments need to be pairwise checked for intersection
and those parts constituting the outer contour need to be identi-
�ed and connected. Unfortunately, this approach may fail since no
robust criteria can be found to distinguish between segments that
should be (partially) contained in the contour and those that do not.
However, prior to performing the following rasterization-based re-
construction, we check the polygonal segments for intersection and
fall back to the purely geometric approach in the case that no inter-
sections are detected.

We propose a rasterization-based approach which is able to ro-
bustly reconstruct a planar manifold polygon given an arbitrary set
of polygonal segments. We start by rendering all segments into an
of�ine buffer to create an imageI showing a slice through the in-
put mesh. Since small gaps may occur in-between the segments,
we executek dilation steps onI , wherek depends on the size of
the gaps to be closed. During the subsequentk erosion steps, we
follow the approach of [Bischoff and Kobbelt 2005] and erode a
foreground pixelpx;y if and only if it satis�es both of the following
two conditions: First,px;y was not set as foreground pixel during
the initial rasterization. Secondly, when cycling the 8-pixel neigh-
borhood ofpx;y we encounter at most one switch from background
to foreground and vice versa. This ensures that in the resulting im-
age small gaps are closed while the original topology is preserved
otherwise.

The idea of our algorithm is to walk around the outside of the con-
tour to be reconstructed. To accelerate the computation we create
a uniform axes-aligned grid that partitions the image into quadran-
gular cells. For each cellci;j we store the end points of all poly-
gon edges rendered intoci;j . Furthermore, we store those polygon
edges that intersect one of the cell's four grid edges, together with
the point of intersection. Our extraction algorithm then identi�es all
cells containing geometry information and forming the contour, by
walking along the grid edges in counterclockwise direction. Simul-
taneously, it identi�es the edges within the visited cells that con-
stitute the contour and adds them to the manifold polygon in the
correct order.

Consider Fig. 3 for an illustration of our method: (a) shows two
exemplary cells of size8 � 8 pixels. Suppose we detect a �rst fore-
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Figure 4: Different cases occurring in a single cell during the con-
tour reconstruction: (a) One segment intersects the cell. (b) Two
segments intersecting the cell are connected to a single manifold
segment. (c) Ambiguous case: Grid edges are intersected multiple
times.

ground pixel (black) on the top grid edge of the upper cell as start-
ing point for the contour extraction. This pixel indicates where we
enter the upper cell. Starting from there, we walk along the cell's
grid edges in counterclockwise direction and compare the colors of
neighboring pixels. The next occurrence of a black pixel indicates
at which edge the contour leaves the cell (bottom edge). Simultane-
ously, it indicates at which grid edge we enter the neighboring cell
(top edge). Hence, after examining cellci;j we continue with one
of the four neighboring cellsci � 1;j or ci;j � 1 depending on the grid
edge whereci;j is left.

The image traversal serves as topological guide for the construc-
tion of a manifold contour polygon. We add the points within each
visited cell to the manifold polygon depending on the cell charac-
teristics depicted in Fig. 4. A cell can be intersected by one single
polygonal segment (a), or by multiple segments. In the latter case,
we need to distinguish between a situation where both the entering
and the leaving grid edge are intersected by exactly one segment
(b), and the situation in which the entering and/or the leaving grid
edge is intersected multiple times by possibly different segments
(c). Suppose we enter a cell on the top edgeein and leave it on
the bottom edgeeout as illustrated in Fig. 4. The top edgeein is
intersected by a segmentSin while eout is intersected by a segment
Sout . In the case thatSin = Sout (a) we simply add all points
pi 2 Sin within the cell to the �nal manifold polygon. In the case
that Sin 6= Sout (b) we compute two point setsPin � Sin con-
taining all points within the cell that belong to segmentSin and
Pout � Sout containing all points that belong to segmentSout . We
then compute the pair of pointsp�

in 2 Pin andp�
out 2 Pout having

the minimum distance

arg min
p in 2 S in

arg min
pout 2 Sout

f dist (pin ; pout � 1pout )g:

We add the point setf p 2 Pin jpstart � p � p�
in g, i.e., all points

betweenpstart andp�
in on segmentSin , and then add the point set

f p 2 Pout jp�
out � p � pend g, i.e., all points betweenp�

out and
pend on segmentSout , in the correct order to the �nal polygon.
The relation< thereby refers to the index-based explicit ordering
of points in a manifold polygon. Bypstart andpend we denote the
endpoint of the edge inSin or Sout , respectively, which intersects
the respective grid edge and lies within the current cell. In the case
that we encounter a situation with more than one intersection on
the leaving grid edge (cf. Fig. 4 (c)), the choice for the leaving seg-
mentSout becomes ambiguous. There are multiple intersections
of the bottom edge with polygonal segments but our goal is the re-
construction of the outer contour. Hence, we simply chose the �rst
intersection we encounter while traversing the grid edge, i.e., the in-
tersection closest to the edge's starting point (red segment in Fig. 4



(c)). Although the contour extraction is topology-driven, the geo-
metrical decision is inevitable, since several intersections may be
contained within one foreground pixel and the image traversal does
not provide enough topology information. The selected outgoing
intersection is then kept as incoming intersection for the neighbor-
ing cell and hence does not need to be recomputed.

Our method allows for the extraction of a globally manifold con-
tour polygon from an arbitrary complex set of polygonal segments.
Since we always generate a closed contour, it happens that if the
input is not closed, we generate the inside of the input as well.
However, since the manifold reconstruction is performed in a 2D
plane, we are able to compute consistent normals at each vertex of
the resulting manifold polygon. This on the one hand allows for
distinguishing between the outer and the inner part of the contour
and furthermore overcomes the possible lack of a consistent normal
orientation in the input model.

In our experiments, we found an image resolution of800 � 600
pixels andk = 1 dilation and erosion steps together with a grid
resolution of8 � 8 pixels suf�cient for the construction of precise
contour polygons.

4.3.3 Graph-Cut Optimization

A complete �shbone with one manifold rib polygon per surface
sample establishes a locally regular structure in highly unstructured
surface areas which allows us to optimize a feature curvec(t). In-
stead of optimizingc(t) directly, we compute optimal positions of
the samplessi on the input surface and re-approximate them by
c(t). We optimize the positions of the surface samples w.r.t. a set of
criteria: They include external forces modeling surface properties
as well as an internal force imposing smoothness requirements to
the optimization problem. The latter is crucial since we would like
the resulting polygon of surface samples to exhibit low geodesic
curvature. Otherwise, the approximation of a noisy set of samples
would result in a curve which suffers from high curvature or ap-
proximation errors.

We formulate the task of extracting optimal sample positions as
a graph cut problem as illustrated in Fig. 5. Each rib polygonbi

is sampled at dense but discrete locationsbi;j , constituting a set of
possible positions of the associated surface samplesi (cf. Fig. 5(a)).
By sampling each rib, we construct a planar quad-regular graph
structureG = ( V; E) with one column per rib (cf. Fig. 5(b)). No-
tice that the edgesE , not the vertices of columni in G represent the
samplesbi;j on rib i . Hence, havingk samples on ribi , there arek
edges andk + 1 vertices in columni of G. Edges connecting sam-
ples of the same rib (vertical edges) are in the following referred
to asrib edgeswhereas edges connecting vertices of neighboring
ribs are referred to ascross edges. Capacities are assigned to rib
edges by evaluating the following external optimization criteria at
the corresponding rib samplesbi;j .

We introduce two external criteria which model the optimal surface
requirements. The �rst criterion pulls the curve to regions of maxi-
mum curvature. We therefore evaluate the curvature at each sample
bi;j as the average of the discrete normal curvature in the directions
of the adjacent rip edgese0 = ( bi;j � 1 ; bi;j ) ande1 = ( bi;j ; bi;j +1 ):

! curv (bi;j ) =
1
2

(j� k j + j� k +1 j); with � k =
2 � (bi;k � 1 � bi;k ) � n

kbi;k � 1 � bi;k k2

andn being the edge normal. The second criterion encourages the
curve to align to surface regions with a speci�c normal angle, en-
closed with the axes of the coordinate system. This criterion pro-
motes feature curves to approximate isophotes. We evaluate the

c(t)

bi;j

bi
si

(a)

Source

Sink
(b)

Figure 5: Fishbone structure: (a) The feature curvec(t) forms the
backbone of a �shbone structure with one orthogonal ribbi per
surface samplesi . The optimal positions of the surface samples are
obtained by embedding the �shbone into a planar graph structure
(b) and computing the minimum cut. The orange edges represent
the backbone samplessi . Our algorithm guarantees the cut to be
monotonic (green line) by assigning appropriate edge capacities.
A cut as depicted by the solid red line which results in ambiguous
sample positions is impossible since there always exists a cheaper
cut (dashed red line).

surface normal angle with one of the axes at each rib samplebi;j as

! normal (bi;j ) = j arccos(n i;j � a) � � j

with � being the desired surface normal angle anda being the x-
, y-, or z-unit vector of the coordinate frame. The surface normal
n i;j at samplebi;j is obtained by linear interpolation of the normals
at the endpoints of the current polygon edge. Since the criteria
measure different quantities we normalize! curv and! normal to the
interval[0; 1]. To obtain the capacity� of a rib edge inG, we simply
compute the weighted sum over the normalized external forces:

� (bi;j ) = � � ! curv (bi;j ) + (1 � � ) � ! normal (bi;j ): (1)

The parameter� allows for weighting of the criteria. Note, that op-
timization objectives are often application dependend and the ex-
ternal criteria presented here are examples. It is straightforward to
integrate any other forces which can be evaluated on �shbone rips.

The capacities assigned to edges along the ribs model external
forces that shift the samples to those positions on the surface which
best meet the optimization criteria. However, optimizing the sample
positions subject to these forces only, without imposing any internal
smoothness requirements, may lead to an arbitrary zig-zag shape of
the resulting surface sample polygon. We therefore introduce an
internal smoothness criterion by assigning an appropriate capacity
to cross edges (horizontal edges in Fig. 5(b)). This capacity� is set
to be always greater than all capacities associated to rib edges:

� � max
i;j

� (bi;j ):

This ensures that in each column ofG (along a rib) exactly one
vertical edge is cut. Hence, the resulting minimal cut throughG is
always monotonic (green line in Fig. 5(b)). A cut as depicted by the
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Figure 6: Geometric detail in the input model may induce the pro-
jection of surface samples (large dots) to both sides of a sharp fea-
ture and hence results in a zig-zag shape of the backbone samples
(a). Constructing the �shbone and running the graph cut optimiza-
tion without synchronizing the ribs results in a feature curve suffer-
ing from high curvature (b) Our rib synchronization establishes a
smoothed line of backbone samples (yellow dots) and hence results
in a smooth optimized feature curve (c).

red solid line, which would lead to more than one optimal position
for a surface sample, cannot occur since its costs are guaranteed
to be larger than the costs of the cut depicted by the dashed red
line. The user can modify the stiffness of the resulting curve by
adjusting a stiffness factorf � 1 which is used for scaling the
capacity of cross edges. A positional constraint for a surface sample
sc is integrated into the graph embedding by assigning a capacity
equal to zero to the graph edge associated to the rib samplebc;j

which has minimum distance to the desired surface position, while
the capacities of all other edges in columnc are set to in�nity.

Finally, the top row of vertices ofG is connected to the source,
the bottom row is connected to the sink and all edges connecting
source and sink are assigned an in�nite capacity guaranteeing they
are never cut. Computing the minimal cut throughG results in a set
of graph edges that are cut. The quad-structure ofG ensures that
each column ofG is cut at least once, since otherwise it is impos-
sible to disconnect source and sink. Simultaneously, the choice of
the capacities ensures that in each column exactly one vertical edge
is cut. The rib sampleb�

i associated with the edge cut in columni is
the optimal position for the surface samplesi . Since the rib samples
were created by sampling rib polygons which may span over gaps
in the input model, they do not necessarily lie on the surface. We
therefore reproject theb�

i onto the input model resulting in the �-
nal optimal surface samplesS� = f s�

0 ; :::; s�
m � 1g . Re-computing

a least squares approximation �nally yields the optimized feature
curvec(t) in demand.

A special case that needs to be taken into account in the curve opti-
mization is posed by geometric detail contained in the input model.
The projection of an initial sketch curve (cf. Sec. 4.1) may produce
surface samples which are located on different sides of a geometric
detail. Hence, we need to compute an index offset to ”synchronize“
neighboring ribs prior to the computation of the graph cut embed-
ding. Consider Fig. 6 for an illustration. The surface samples are
projected onto different sides of a sharp feature (a). Regardless of
the lack of smoothness, the graph cut embedding would encode the
surface samplessi as opposite horizontal edges in the center row of
the graph structure. Hence, the zig-zag shape is assumed to be max-
imally smooth since no horizontal edges would need to be cut. A
curve which approximates these samples suffers from high curva-
ture as illustrated in Fig. 6 (b). To overcome this problem, we shift
the ribs in the following way: Firstly, we sample each rib as usual.
Starting at the backbone sample~si = si of rib i (with i being either
the �rst or some rib in the middle), we determine the sample on the

(a) (b)

(c) (d)

r = 6

r = 5

Figure 7: Template mesh and associated curve network: (a)
Roof/body mesh, (b) wheelhouse mesh, (c) roof/body network, (d)
wheelhouse network.

neighboring ribi + 1 which has minimum Euclidean distance to
~si and de�ne it as the new backbone sample~si +1 . The number of
samples inbetween the original surface samplesi +1 of rib i +1 and
the new sample~si +1 determines in which direction and how many
steps the rib must be shifted such that the backbone is guaranteed to
be smooth. Running the graph cut optimization on the shifted �sh-
bone structure reduces the zig-zag shape of the sample polyline to a
minimum and �nally produces a smoother feature curve (cf. Fig. 6
(c)). Hence, the rib synchronization establishes a local structure
which allows us to execute the graph cut optimization on arbitrary
geometry.

5 Application: A Morphable Shape Model for
Cars

We demonstrate the usefulness of our sketch-based interface by ap-
plying it to the recovery of feature curves from a set of car body
models. Having extracted a set of feature curves from an input
model we automatically construct a feature network which estab-
lishes correspondences to a pre-de�ned template mesh. The input
model is then registered to the template guided by the feature net-
work in a fully automatical way. Having registered a set of car bod-
ies to the template �nally allows for the construction of a statistical
(PCA) shape model. In addition, the feature network implements
an intuitive metaphor for exploring the shape space spanned by the
input models.

There exists a variety of related work in the context of concep-
tual design for automotive shapes. We will brie�y review three
approaches which are closely related to our work. [Kara and Shi-
mada 2008] align a 3D template model to 2D sketches. The aligned
model is then re�ned by tracing a car's characteristic lines on the
sketch. [Ḱokai et al. 2007] represent a car by a network of poly-
lines capturing the main features. The user can manipulate the net-
work by pulling single vertices and sketching over lines to generate
new shapes. However, the feature network was extracted from in-
put models in a solely manual process. In [Smith et al. 2007] a
framework for navigation in a shape space of registered models of
automotive shapes is presented. Again, the registration problem is
solved in a tedious manual preprocessing step. The user can explore
the shape space spanned by the models by dragging single feature
points or manipulating shape space parameters.



5.1 Registration

A car has a prede�ned coordinate frame where the origin is located
in the middle of the front wheel axle, the x-axis points in direction
of the trunk, the y-axis at the front-passenger's side and the z-axis
upwards. To reduce distortion in the later PCA model, we segment
a car into four components: the roof, the body and front and rear
wheelhouse. We thereby employ the symmetry w.r.t. the x-z plane
and register the driver's left half only, while the remaining half is
obtained by mirroring the result. For each component, we de�ne a
network of feature curves as well as a template mesh as depicted in
Fig. 7. We register an input model in a two-step procedure.

5.1.1 Network construction

In the feature curves recovered by the user, the endpoints of a fea-
ture are not placed precisely. Hence, we have to compute the feature
endpoints by pairwise intersecting the input curves yielding the red
nodes in the curve network depicted in Fig. 7 (c) and (d). If three
feature curves do not intersect in a common point, we compute the
average of the three pairwise intersection points.

5.1.2 Mapping

In the second step, a pre-de�ned template quad mesh is mapped
to its associated curve network thereby roughly approximating the
underlying geometry of the input model.

There are two types of vertices in a template mesh: feature vertices
and non-feature vertices. While the �nal positions of the feature
vertices are de�ned by the curve network, the �nal positions of non-
feature vertices are computed as a combination of a sampling of the
input surface and a vertex regularization.

Our system constructs a template mesh on-the-�y letting the user
de�ne its resolution. Note that the computation of a PCA shape
model requires a common resolution of all registered models. Fig. 7
(a) shows an exemplary template mesh where the roof is a topolog-
ical cube with four faces while the body component contains an
additional face on the bottom. The wheelhouse component is de-
picted in (b). Each template component contains feature vertices
(highlighted in red) which directly correspond to the red intersec-
tions of feature curves in Fig. (c) and (d). The green feature vertices
correspond to samples on the network which are obtained by uni-
formly sampling the relevant interval of the respective feature curve
at r � 2 locations, depending on the template resolutionr .

The curve samples represent the �nal coordinates of all template
feature vertices. The �nal positions of the non-feature vertices are
computed in two steps: First, we construct a uniform Laplace sys-
tem with all feature vertices as positional boundary constraints and
solve for the coordinates of the non-feature verticespmem

i . This dis-
tributes the non-feature vertices on the membrane surface spanned
by the feature vertices (for more details, please see [Kobbelt et al.
1998]) and allows us to compute vertex normalsn i . In the fol-
lowing projection step, we compute the outmost intersection of the
vertex normal with the model, i.e.,

pinter
i = pmem

i + 
 max � n i

is the point of intersection with the maximal parameter
 max . No-
tice that if pmem

i lies outside the model, the outmost intersection
lies inside the template and hence the maximal parameter
 max is
negative.

However, computing the outmost intersection may lead to erro-
neous results as well. In situations where the geometric detail is
�ner than what can be captured with the template mesh resolu-
tion, alias effects occur. E.g. a vertex which is supposed to lie on

(a) (b)

Figure 8: Mapping problem: (a) The outmost intersection of a ver-
tex normal with the input model may lie on geometric detail which
should not be captured with the template mesh. (b) We eliminate
these outliers in the mapping step by integrating a vertex regular-
ization into the sampling of the input surface.

the driver's side window may be projected onto the exterior mirror
since this detail is further outside (cf. Fig. 8). To overcome this
problem, we include the positions of neighboring vertices to detect
if an intersection is reliable. The optimal positionp�

i of a non-
feature vertexvi is supposed to be some weighted average of the
outmost mesh intersectionpinter

i and the membrane positionpmem
i .

The larger the distance between the two positions, the less reliable is
considered the intersectionpinter

i . To de�ne an appropriate weight,
we compute

di = min
�

kpinter
i � pmem

i k
� � emin

; 1
�

;

which measures the ratio of the distance betweenpinter
i andpmem

i
and the minimum lengthemin of edges adjacent tovi . We take
the minimum of this ratio and1 to establish a smooth transition
betweenpinter andpmem and at the same time discarding outliers
by clamping them to 1. In our experiments, we found� 2 [1; 3]
to lead to the best results. The following transfer function �nally
maps vertex distances to weights! 2 [0; 1]:

! inter (vi ) = 1 � di (2)
! mem (vi ) = di

Considering the membrane position as well as the mesh intersec-
tion additionally enables us to correctly handle vertices for which
an intersection of their normal with the mesh cannot be computed
due to gaps between neighboring surface patches. If there is no
intersection, we simply use the membrane position only.

We formulate the computation of the �nal vertex positions as a
weighted constrained least squares problem of the following form:
The approximation component

W �
�

L
K

�
� X =

�
0
Q

�
(3)

consist of two parts: MatrixL is a uniform Laplace system model-
ing the membrane positions while matrixK is generated by start-
ing with an identity matrix and removing all rows corresponding to
vertices for which an intersection cannot be computed. Finally, we
multiply Eq. (3) with a diagonal matrixW containing the weights
computed with Eq. (2) to account for the reliability of the surface
intersections. The points of intersection are stored in the vectorQ.
We augment Eq. (3) with interpolation constraints

M � X = P (4)



given by the positions of the feature verticesP . We minimize the
sum of the errors in Eq. (3) subject to the interpolation constraints
(4) using Lagrange multipliers (cf. Sec. 4.1) which yields the �nal
positions for all template vertices.

Notice that computing the outmost intersection of the vertex nor-
mal with the mesh is not always feasible. For template vertices of
the car body which are actually occluded by either the roof or one
of the wheelhouses, we cannot compute a meaningful new 3D po-
sition on the input model. To determine these vertices, we intersect
the normals of all body vertices with the roof as well as with both
wheelhouses. All vertices for which an intersection of their normal
with one of the other components was detected are then excluded
from the projection onto the input model. Instead, we only use their
membrane position in the optimization.

5.2 Statistical Shape Model

The registration of a number of input models to the same tem-
plate mesh establishes full vertex correspondence and hence en-
ables us to construct a statistical shape model. We repre-
sent the geometry of each registered model by a shape vector
X i = ( x0 ; y0 ; z0 ; : : : ; x n � 1 ; yn � 1 ; zn � 1)T 2 R3n which con-
tains thex-, y- and z-coordinates of then vertices of the tem-
plate mesh. Writing allk shapes as columns in a data matrix
X = [ X 0 ; X 1 ; : : : ; X k � 1 ] and subtracting the mean shapeX al-
lows for the computation of a statistical shape model by applying
Principal Component Analysis (PCA) toX . A new shapeS can
then be computed as

S = X + � � (5)

with � 2 R3n � k � 1 being the matrix of eigenvectors of the co-
variance matrix and� = ( � 0 ; : : : � k � 2)T being a vector of coef�-
cients. Note that there are onlyk � 1 meaningful eigenvectors since
the mean was subtracted from the input shapes.

The bene�t of a PCA shape model compared to simple af�ne com-
binations of the input shapes is that the PCA model allows for di-
mensionality reduction. Selecting the eigenvectors corresponding
to the largestl < k � 1 eigenvectors in Eq. (6) enables the user
to explore the shape space containing the most important variances.
This is especially useful when the number of input models becomes
large.

Since we would like to enable the user to explore the shape space
spanned by the input models in an intuitive way, we need to im-
plement a suitable modeling metaphor. On the one hand, de�ning
target positions by repositioning individual vertices of the shapeS
is too laborious. On the other hand, manipulating the coef�cients
� i using e.g. one slider per coef�cient does not provide intuitive
control. However, the feature vertices in a PCA shapeS are re-
lated to feature curves which were recovered from the input models
and hence establish proper feature correspondence. Since feature
curves express the essential characteristics of a surface, we employ
the curves as an intuitive modeling metaphor.

Every manipulation of a feature curve on the PCA model de�nes a
set of target vertex positionsT 2 R3m wherem < n is the number
of feature vertices in the template mesh. To compute the shapeS�

which best approximates the target positions, we compute the PCA
coef�cients � i such that

kT � B (X + � � )k2 ! min (6)

is minimized. MatrixB eliminates all rows inX and� which do
not represent a feature vertex. Since the numberm of feature ver-
tices is supposed to be larger than the numberk of input shapes, the
coef�cients � are obtained by solving the overdetermined system
(6) in the least squares sense. The �nal shapeS� is then computed

(a) (b)

Figure 9: Feature curves recovered from (a) a noisy fandisk model
and (b) the Max Planck head model.

Figure 10: Sharp features as well as features with varying intensity
are recovered from a complex car body model.

using Eq. (5). To avoid degenerated con�gurations in whichS�

does not lie within the shape space spanned by the input models,
we require the� i to lie within the bounding box spanned by the
coef�cients � i which express the original input models in the PCA
space and hence to satisfy� min

i � � i � � max
i .

6 Results

We used our sketch-based interface to recover feature curves froma
variety of input models. Depending on the class of models, the def-
inition of a feature varies. Feature extraction from manifold models
as depicted in Fig. 9 which may even exhibit sharp features as the
fandisk in (a) is a simpler task. All features are easy to identify due
to their high curvature. Although these meshes could be processed
with automatic approaches as well, we present them for the sake of
completeness. In contrast, automatic approaches fail to detect fea-
tures which largely vary in their intensity or which may even vanish
in some surface regions. Furthermore, the lack of any constraints on
the input data renders the evaluation of surface criteria impossible
without any prior mesh repair.

Our system locally reconstructs structural information which allows
us to extract features from highly complex input data. The costs of
the initial computation of the �shbone depend on the number of
rips which need to be reconstructed using the rasterization-based
approach (cf. Sec. 4.3.2) in case that the simple geometric stitching
approach fails due to the inconsistency of the input model. In the



case that the geometric approach succeeds, the complete �shbone
is constructed in real time. It takes additional 0.3 sec. per execution
of the rasterization-based repair algorithm (on an Intel Core2 Duo
2.66GHz with 4GB RAM).

From the car model in Fig. 10, we successfully recovered sharp
features as well as feature curves which vanish in some regions
(e.g. where the bumper merges with the area around the front wheel-
house). The recovery of the complete set of feature curves took
approx. 10 minutes.

In our application scenario, we recovered smooth feature curves
from complex 3D models of car bodies. The models are triangle
as well as general poly meshes which are non-manifold and lack
a consistent normal orientation. Each model consist of 100 to 300
surface patches which may intersect and contain gaps between each
other. The complexity ranges from 10k to 40k vertices. From each
model, we recovered a complete curve network which took between
10 and 20 minutes per model. Fig. 11 shows some exemplary mod-
els together with the recovered feature curves in the top rows as
well as the result of the fully automatic registration in the bottom
rows. The resolution of the template mesh was chosen asn = 1614
vertices in total.

In general, prior to de�ning a feature network the question about
what a feature actually is, needs to be answered. Once the topology
of the feature network is de�ned, every other geometric structure is
no feature by de�nition. The pre-de�ned set of feature curves used
in the registration of car bodies is considered the lowest common
denominator since we are always able to identify all of the curves
on each car model. However, some cars exhibit more characteristic
lines especially on the front of the car or sharp edges on the engine
hood or the trunk area. We are aware that these additional charac-
teristics can by missed by our template mapping since we can only
guarantee the proper alignment of those edges that are de�ned as
features in the template. Increasing the set of feature curves would
on the one hand allow for a more precise approximation of the in-
put model but on the other hand evoke the problem of how to cor-
rectly place the additional curves in cases when a car body does not
exhibit the additional features. To avoid ambiguity, we restricted
ourselves to the minimal set of feature curves.

From a database of 13 registered car models, we computed a statis-
tical shape model which allows for intuitive exploration of the shape
space using the feature network. Fig. 12 depicts three exemplary re-
sults obtained with our system. Please refer to the accompanying
video for an illustration of all registered input models as well as an
exemplary exploration of the shape space.

7 Conclusions

We have presented an intuitive sketch-based user interface which
allows for the recovery of feature curves from highly complex free-
form surfaces. Using a �shbone structure, we reduce the task of
reconstructing structural information on which optimization crite-
ria can be evaluated from 3D surfaces to 2D curves. This enables
a graph cut based optimization method which globally optimizes a
feature curve w.r.t. several surface criteria, regardless of the com-
plexity and consistency of the input model.

We demonstrated the usefulness of our method by applying it to the
practical problem of the registration of car body models. Recover-
ing the same network of feature curves from several input models
allows for the construction of a PCA shape model. Since feature
curves represent the essential characteristics of a surface the user
can intuitively model new cars by manipulating the feature curves
in 3D space.

Figure 12: New car models can be modeled intuitively by manipu-
lating the feature network. Our system computes the best matching
PCA coef�cients in the least squares sense.

In the future, we would like to extend our system such that it is able
to recover feature curves from point clouds. This requires a man-
ifold repair method which reconstructs �shbone ribs from points
which lack any topology information. Furthermore, we would like
to integrate additional optimization criteria into the graph-cut opti-
mization. In the case that the input geometry exhibits some regular-
ity in the mesh tessellation, an interesting criterion would enforce
the feature curve to align to isolines contained in the input geome-
try.
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