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Abstract

We present a novel approach to feature-aware mesh deformation. Previous mesh editing methods are based on an elastic deformation
model and thus tend to uniformly distribute the distortion i n a least squares sense over the entire deformation region. Recent
results from image resizing, however, show that discrete local modi�cations like deleting or adding connected seams of image pixels
in regions with low saliency lead to far superior preservati on of local features compared to uniform scaling { the image retargeting
analogon to least squares mesh deformation. Hence, we propose a discrete mesh editing scheme that combines elastic as well as
plastic deformation (in regions with little geometric deta il) by transferring the concept of seam carving from image ret argeting to
the mesh deformation scenario. A geometry seam consists of aconnected strip of triangles within the mesh's deformation region. By
collapsing or splitting the interior edges of this strip we p erform a deletion or insertion operation that is equivalent t o image seam
carving and can be interpreted as a local plastic deformation. We use a feature measure to rate the geometric saliency of each triangle
in the mesh and a well-adjusted distortion measure to determ ine where the current mesh distortion asks for plastic deform ations,
i.e., for deletion or insertion of geometry seams. Precomputing a �xed set of low-saliency seams in the deformation region allows
us to perform fast seam deletion and insertion operations in a predetermined order such that the local mesh modi�cations are
properly restored when a mesh editing operation is (partial ly) undone. Geometry seam carving hence enables the deformation of a
given mesh in a way that causes stronger distortion in homogeneous mesh regions while salient features are preserved much better.
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1. Introduction

The deformation of 3D models has a wide range of ap-
plications in artistic as well as industrial design. Nowa-
days, the predominant representation of surfaces are trian-
gle meshes which come at high resolutions, often acquired
using 3D laser scanning, and exhibiting geometric details
at various scales. For a deformation technique to be consid-
ered useful for editing of such meshes, it is hence crucial that
it meets certain requirements: apart from providing visual
feedback for interactive application, it should provide easy
to control modeling metaphors. Most importantly, it should
generate intuitive and predictable deformation results that
are physically plausible and aesthetically pleasing. In order
to meet these quality requirements, a deformation method
has to preserve local characteristics of a surface, i.e., geo-
metric detail or features, under deformation.

This paper presents a novel mesh deformation technique
that puts special emphasis on the aspect of feature preser-
vation. Previous mesh editing approaches are mostly based
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on an elastic deformation model and usually distribute the
distortion over the entire deformation region in a least-
squares sense. Recent research on image resizing, however,
demonstrated that discrete modi�cations produce results
that are far superior to those obtained by applying uniform
scaling, which can be considered as the analogon in the im-
age processing world to a least-squares deformation in the
mesh editing world.

In their work on image seam carving, Avidan and
Shamir [1] insert or delete a connected seam of image pixels
in regions with low energy yielding realistically looking and
visually pleasing resizing results. In our work, we transfer
the concept of discrete modi�cations from the image re-
targeting to the mesh deformation scenario. Our de�nition
of a seam is closely related to the image setting: ageom-
etry seam is a closed and connected path of low energy
triangles and runs through the modeling region of a mesh.
Depending on the characteristics of the deformation, ge-
ometry seams can be removed from the mesh by collapsing
their interior edges and can be inserted by splitting these
edges which resembles the delete or insert operations in
image seam carving. By precomputing a set of low-saliency



seams, we can perform deletion and insertion operations
at interactive rates. Furthermore, applying the operations
in a predetermined order allows us to properly undo pre-
vious editing operations and hence to restore the original
model. We use a well-established elastic mesh deformation
method which we signi�cantly adapt such that it jointly
works with this novel plastic and discrete modi�cation
scheme which intervenes when the surface distortion ex-
ceeds certain thresholds and calls for additional remeshing.
This enables editing of a 3D model thereby distributing
the distortion non-homogeneously over the model and
hence causing stronger deformations in low-saliency mesh
regions while features are preserved much better compared
to purely elastic mesh editing methods.

2. Related work

There exists a wide variety of surface deformation tech-
niques in the literature which, in order to position our work,
we roughly classify into two categories: First, there are gen-
eral deformation techniques that allow for general editing
operations and that distribute the deformation error over
the entire object. Second, there exists structure-aware tech-
niques that perform a structure analysis in a preprocess-
ing phase and then restrict the allowed modi�cations to
application-dependent editing operations that preserve the
structure-de�ning mesh features. The �rst class of meth-
ods comprises purely geometric, general deformation tech-
niques ranging from surface-based methods (linear as well
as non-linear (e.g. Botsch et al. [4])) over physically-based
techniques (e.g. Nealen et al. [15]) to space- or free-form
deformation methods (e.g. Bechmann [2]). Due to their
fast, e�cient, and robust nature, linear surface-based tech-
niques (see Botsch and Sorkine [5] for an excellent survey)
have been an intensively investigated �eld in Computer
Graphics and object modeling. They usually formulate the
surface deformation as a global quadratic variational opti-
mization problem whose solution can be obtained by solv-
ing a sparse linear system of equations subject to a set of
modeling constraints that are inferred from the user inter-
action. The deformation error is thereby distributed over
the modeling region in a least squares sense and the mesh
topology remains unchanged. We characterize these meth-
ods aselastic deformation techniques since the deformed
models are always elastically distorted versions of the orig-
inal input geometry. While these approaches generate very
intuitive and aesthetically pleasing results for organic ob-
jects like animals, faces, body parts and so on, they often
fail at providing intuitive deformations of man-made ob-
jects like mechanical parts, furniture, architectural models,
etc. The latter type of objects usually exhibits 
at regions
and sharp characteristic features that de�ne the shape of
the entire object. When these surface characteristics are
distorted, the model' s de�ning structure is seriously dis-
turbed. Masuda et al. [14] proposed a surface-based mesh
editing framework that introduces hard constraints into

the deformation and hence allows to rigidly preserve sharp
features or hole boundaries under deformation. However,
these hard constraints need to be manually selected by the
user in a preprocessing step.

The shortcomings of general deformation methods in pre-
serving certain inherent structures of an object gave rise to
a research �eld that has gained a lot of attention in recent
years. This second class of deformation techniques focuses
on structure-aware shape deformation. They usually ana-
lyze the input shape and detect regular patterns (e.g. Pauly
et al. [16], Bokeloh et al. [3]) or extract a set of charac-
teristic curves that de�ne the surface (e.g. Singh and Fi-
ume [19], Gal et al. [8]) in a preprocessing step. The models
are then edited by either adding and removing local pat-
tern elements or by manipulating the characteristic curves.
However, these techniques are usually targeted at man-
made objects as this class of models typically exhibits the
required feature structures. Decomposing a model into its
structural elements and replicating or scaling these struc-
tures is often applied in architectural applications (e.g.Lin
et al [13]) as buildings usually exhibit strong regularity.
Restricting the type of possible editing operations to these
characteristic entities preserves the de�ning surface struc-
ture under editing operations. We characterize the tech-
niques comprised in this second class of methods asplastic
deformation methods since the deformed models are gener-
ated by adding or removing certain structures or \surface
material" from the original input geometry.

Related to these approaches is the work on non-
homogeneous resizing of complex models by Kraevoy et
al. [12]. They detect mesh regions that are likely to suf-
fer from distortion artifacts and embed the model into a
protective grid. During resizing, the grid is scaled non-
homogeneously while respecting the varying vulnerability
and hence the method distributes the scaling throughout
less vulnerable regions of the model. However, the types of
supported deformations are again restricted, this time to
scaling or stretching along orthogonal directions. General
deformations introduced by a�ne transformations cannot
be applied as the vulnerability map depends on the axis
along which the model is scaled. In material aware defor-
mations by Popa et al. [17], the deformation error is also
distributed non-homogeneously over the model in a way
that respects prede�ned material properties in order to
introduce varying sti�ness into the deformation.

The observation we share with the second class of editing
techniques is that visual artifacts are caused by distorted
features and hence are localized in surface regions exhibit-
ing high saliency while other regions are less vulnerable to
shape distortions. Hence, the deformation should be dis-
tributed non-homogeneously over the model, thereby pro-
tecting feature parts while others are deformed more exces-
sively. However, instead of using regular patterns or curves
as modeling metaphors or restricting the supported editing
operations to certain directions or special transformations,
our method uses the well-established handle metaphor that
enables the user to apply arbitrary a�ne transformations
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to the model. Hence, our approach combines the e�cient
and very intuitive control o�ered by the �rst class of meth-
ods, the unrestricted linear surface deformation techniques,
with a content-respecting distribution of the distortion a s
provided by the second class of restricted methods. We com-
bine the advantages of both approaches by augmenting a
widely used general andelastic Laplacian-based deforma-
tion technique with a novel discrete andplastic mesh mod-
i�cation scheme that adopts the mesh tessellation to the
varying degree of surface distortion.

Although we propose a new method for 3D surface de-
formation, the technique that is most closely related to our
work concentrates on 2D image retargeting. In their paper
on image seam carving, Avidan and Shamir [1] present a
method for resizing images that respects the image con-
tent. A seam is a connected path of low energy pixels cross-
ing the image from top to bottom or from left to right.
By successively removing or inserting seams, the image can
be resized in both dimensions. Storing the order of all re-
moving and insertion operations enables multi-size images
that can change their size dynamically while their content
is preserved as well as possible.

3. Geometry Seam Carving

Our novel mesh editing scheme emulates a physical sur-
face deformation process that supports elastic deformation,
i.e., compression and stretching of the material, as well as
plastic deformation which we model as addition and re-
moval of material from the model. We model the elastic
deformation using a well-known Laplacian surface editing
technique which we signi�cantly augment in order to enable
it to jointly work with our new plastic deformation scheme.
This scheme adopts the mesh tessellation to the varying
degree of surface distortion under deformation: our tech-
nique adds and removes triangles in low-saliency regions of
the model and hence emulates the process of adding and
erasing material in a physical modeling setting.

The input to our mesh editing method is a manifold tri-
angle mesh. An editing operation on this mesh consist of
the following steps:

(i) Selection of a region of interest (ROI) (Sec. 3.1).
(ii) Preprocessing phase (Sec. 3.2): harmonic �eld on the

ROI, evaluation of vertex and edge quality measures,
and precomputation of geometry seams.

(iii) Mesh editing (Sec. 3.3): weighted Laplace deforma-
tion and plastic seam carving.

The following subsections describe each step in detail.

3.1. Selection of a region of interest

A widely used paradigm to edit the shape of a surface is
to let the user de�ne a region of interest (ROI) and to edit
this region by moving, rotating, or scaling a handle. We fol-
low the approach of Kobbelt et. al. [11] and let the user se-
lect the ROI, in the following referred to as modeling region

Fig. 1. Input mesh with modeling region (blue), handle region (green)
and �xed region (gray), together with a set of harmonic iso-contours
(red circumferential lines) and perpendicular sector contours (yellow
radial lines).

M , as well as ahandle region by directly painting on the
triangles of the input model. The remaining triangles de�ne
the �xed region. A typical modeling region is topologically
equivalent to a disk (cf. Fig. 1) where the handle region
(green) is enclosed by the modeling region (blue) which it-
self is enclosed by the �xed region (gray). Hence, the mod-
eling region has two boundary polygons:Bhandle consist of
all vertices that lie on the boundary of the handle and the
modeling region whileB f ixed consists of all vertices that lie
on the boundary of the modeling and the �xed region. The
handle vertices impose boundary conditions on the calcu-
lation of the edited surface and change every time the user
manipulates the handle. Additional boundary constraints
are de�ned by the �xed vertices as they remain unchanged
during mesh editing.

To transfer the user's manipulation of the handle to the
modeling region, we use the well-known "Laplacian surface
editing" technique by Sorkine et al. [20]. This technique has
to be signi�cantly augmented, since we combine it with our
new plastic mesh modi�cation scheme which then enables
a geometry-driven adaptation of the mesh tessellation to
the current degree of surface deformation.

3.2. Preprocessing phase

In this phase, we precompute a set of closed triangle
strips, or geometry seams, that run through low-saliency
regions of the mesh's modeling areaM . The preprocessing
comprises three steps: First, a homogeneous �eld is com-
puted on M . Second, we evaluate a set of well-adjusted
vertex and edge quality measures which are �nally used for
extracting a set of geometry seams that can be collapsed or
split during interactive mesh editing later on (cf. Sec. 3.3).

3.2.1. Harmonic �eld
In the �rst preprocessing step, we compute a harmonic

�eld H on the modeling regionM and then trace a set of
contours along and acrossH. The harmonic �eld H(v) 2
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Fig. 2. Top row: color-coded edge costs (blue: low costs, red: high costs) comp uted using Eq. 3 with (a) only the saliency term ang( �), (b)
only the term � (�) to account for the length variance of the rings, (c) only the term h(�) based on the harmonic �eld, (d) a combination
of all edge properties with � = 
 = 1 ; � = 0 :25. Bottom row: sets of ring seams R obtained with our graph cut optimization that uses the
respective edge costs from the top row. The rings are color-coded with resp ect to their total costs.

R : vi 2 M ! R is obtained by setting up a uniform
Laplace system

kLx k2 ! min (1)

with L being the uniform Laplace matrix, as well as two sets
of constraints that are de�ned by the boundary polygons
Bhandle and B f ixed :

H (vi ) = 0 8vi 2 Bhandle

H(vi ) = 1 8vi 2 B f ixed :
(2)

Solving Eq. 1 subject to the boundary constraints in Eq. 2
yields the harmonic �eld H on M .

To partition the modeling region, we extract a set of iso-
contours I from H (red, circumferential lines in Fig. 1) and
then trace a set of sector contoursS (yellow, radial lines in
Fig. 1) perpendicularly to the iso-contours. All contours are
embedded into the vertex and edge set ofM and the union
I [ S partitions M into coarse quadrangular patches. To
obtain an (approximate) iso-contour I j to an iso-value � j

of the harmonic �eld H , we detect all edgese = ( vk ; vl ) 2
M with H(vk ) � � j < H(vl ), i.e., those edges that are
intersected by the iso-line. The verticesvk (alternatively
vl ) constitute the iso-contour I j . The set of all iso-contours
I = f I 0; : : : ; I m g for iso-values� j = j

m ; j = 0 ; : : : ; m, then
guides the construction of the set of perpendicular sector
contoursS = f S0; : : : ; Sn g: on each iso-contourI j , we select
equally spaced verticesvj

i ; i = 0 ; : : : ; n. The closest con-
nection between all pairs of verticesvj

i and vj +1
i on neigh-

boring iso-contours I j and I j +1 is computed using the A*

algorithm by Hart et al. [10]. As cost measure, we use the
number of edges on the path betweenvj

i and vj +1
i .

3.2.2. Vertex and edge quality measures
We precompute a set of connected and closed triangle

strips, so calledgeometry seams, within the modeling re-
gion of the input mesh (cf. Sec. 3.2.3). These rings enable
us to locally adapt the mesh tessellation in the case that
the elastic deformation exceed a certain distortion thresh-
old and hence additional plastic deformation has to be per-
formed. Geometry seams should run through low-saliency
regions of the mesh in order to minimize the distortion they
create when their inner edges are split or collapsed dur-
ing mesh editing (cf. Sec. 3.3). Since we will formulate the
computation of the rings as a graph cut problem, we have
to encode all quality measures for the vertices and edges in
the graph's edge costs.

The cost � (e) of an edgee = ( vi ; vj ) 2 M is obtained as
a weighted sum over three edge properties:

� (e) = � � ang(e) + � � � (e) + 
 � h(e): (3)

The �rst property ang( e) measures the geometric saliency
of the edgee: it integrates the maximum angle spanned
by the normal cone of the one-ring faces around the edge's
vertices, i.e.,

ang(e) =
1
2

(ang(vi ) + ang( vj )) ; with

ang(v) = max
t k ;t l 2 N 1 (v)

\ (n(tk ); n(t l ))
(4)

4



and n(tk ) being the face normal of the triangletk . Hence,
this property encourages cutting non-feature edges as the
maximum angles spanned by the normal cones of their ver-
tices is usually very small.

The second property� (e) contributing to the edge costs
� (e) serves as a normalization factor for the possibly large
variance in the lengths of the ring seams. Consider the ex-
emplary modeling region depicted in Fig. 1. Rings within
this disk-shaped modeling area that are closer to the �xed
region are signi�cantly longer than rings closer to the han-
dle region. Thus, the graph cut will always compute rings of
the latter type as they are short and hence are the result of
a cheaper cut than longer rings. However, we would like the
rings to be invariant to the user de�ned shape of the mod-
eling region. Reliable indicators for the length variance are
provided by the iso-contours computed in Sec. 3.2.1 as, per
de�nition, they are rings themselves. For each iso-contour
I j of length len(I j ) = kI l k, where k � k denotes the total
length of edges inI j , we de�ne a normalization factor

� (I j ) =
lenmax

len(I j )
with lenmax = max

I j 2I
len(I j ):

For each iso-contourI j , we compute the average harmonic
value h(I j ) = 1

len( I j )

P
vk 2 I j

H(vk ) at its vertices. The nor-
malization factor for a vertex vi 2 M with harmonic value
H(vi ) is then obtained as the linear interpolant of the nor-
malization factors at its neighboring iso-contours

� (vi ) =
H(vi ) � h(I j )

h(I j +1 ) � h(I j )
� � (I j +1 )+

h(I j +1 ) � H (vi )

h(I j +1 ) � h(I j )
� � (I j )

whereh(I j ) � H (vi ) < h(I j +1 ). The edge property � (e) is
then de�ned as

� (e) =
1
2

(� (vi ) + � (vj )) :

The third edge property h(e) contributing to the edge
cost � (e) is derived from the harmonic �eld H on the mod-
eling region (cf. Sec. 3.2.1) and is de�ned as

h(e) =
1

jH (vi ) � H (vj )j + �

where � is a su�ciently small regularization term. Edges
connecting vertices with similar harmonic values are as-
signed a higher cost than edges with strongly di�erent har-
monic values at their vertices. This formulation has two
useful properties: First, it promotes cuts of circular shape
as cutting radial edges usually results in lower costs than
cutting edges of circumferential orientation. Second, and
more importantly, the value of the harmonic �eld actually
encodes the distribution of the deformation distortion since
the motion of the handle is essentially scaled by this value.
Areas with high changes in the harmonic �eld will undergo
a strong deformation and are likely to su�er from serious
distortions. The di�erence in the harmonic values at the
vertices of an edgee hence indicates how muche will be
stretched or compressed during deformation. Highly di�er-
ent harmonic values at the edge's vertices result in a small
value for h(e) meaning that cutting the edge is cheap. The

L
e0e1

e2e3

e4

C0C1
C2
C3

C4

Fig. 3. Candidate set constructed during precomputation of one
single ring seam Rk . For each edge ei on the polyline L (yellow),
a candidate ring Ci running through ei is obtained in a graph cut
optimization. The ring Rk is then selected from the candidate set as
the ring causing the minimal costs among all candidates.

term h(e) hence promotes rings that run through edges with
highly di�erent harmonic values, leading to a concentra-
tion of rings in regions with a potentially strong distortio n
where plastic deformation is more likely to occur.

We �nally normalize each of the three terms ang(�), � (�),
and h(�) to the interval [0 ; 1] which completes the edge cost
k(e) de�ned in Eq. 3. The top row of Fig. 2 shows examples
of color-coded edge costs for four di�erent choices of�; �; 

where red indicates high costs and blue indicates low costs.

3.2.3. Precomputation of geometry seams
In image seam carving, Rubinstein et al. [18] replace the

dynamic programming approach to compute optimal pixel
seams of Avidan and Shamir [1] with a graph cut optimiza-
tion. We formulate the computation of geometry seams also
as a graph cut problem.

We precompute a setR = f R0; : : : ; RK g of ring seams
in a way that the �rst one causes the least distortion when
being split or collapsed, the second one causes the second
least distortion and so on. We �rst choose the sector con-
tour L from the set of sectors contoursS that has the lowest
integrated vertex saliency as de�ned in Eq. 4. The contour
L consists ofn edges and connects a vertex onBhandle , the
boundary of the handle region, with a vertex on B f ixed ,
the boundary of the �xed region. Figure 3 illustrates the
computation of one ring seamRk : for each edgeei 2 L,
we compute a connected and closed strip of triangles, a
candidate ring Ci , that contains both triangles adjacent to
ei in a graph cut optimization (cf. e.g. Boykov and Kol-
mogorov [6]). The ring seamRk is then selected from the
set of candidate ringsCk = f C0; : : : Cn � 1g as the ring that
caused the minimum costs in the graph cut optimization
among all candidatesCi 2 Ck ; i = 0 ; : : : ; n � 1

Rk = arg min
C i 2C k

cost(Ci ):

In the next iteration, which computes the ring seamRk+1 ,
we block all previously computed ringsR0; : : : ; Rk to en-
sure that rings are disjoint and hence do not share any
common inner edges or triangles. The procedure outlined
above is repeatedK + 1 times to obtain the complete set
of precomputed ring seamsR = f R0; : : : ; RK g.
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Each candidate ringCi is obtained in a global graph cut
optimization on the modeling regionM of the input mesh.
After constructing the graph from the vertex and edge set
of M and assigning costs to its edges using Eq. 3, we have
to connect two subsets of its vertices to the source and the
sink, respectively. Please consider Fig. 4 for an illustration:
The edgeei = ( vj ; vj +1 ) 2 L where the candidate ring has
to run through divides the polyline L into two polylines
L 0 = f v0; : : : ; vj g connectingvj with the handle region and
L 1 = f vj +1 ; : : : ; vn g connectingvj +1 with the �xed region.
All vertices vl 2 L 0 are connected to the source (green)
while all vertices vl 2 L 1 are connected to the sink (red)
and those edges connecting vertices to the source or the
sink are assigned in�nite costs. Computing the minimum
cut through M yields a set of edgesEcut (orange) that
have been cut. We then retrieve the candidate seam as that
triangle strip having Ecut as its inner edges (light orange
triangles). By construction, the resulting seam is closed and
its faces are edge-connected.

After having computed the candidate setCk and having
selected the ringRk as the candidate ring causing the min-
imum costs among all candidates, we repeat the procedure
for the next ring Rk+1 . Since we require all precomputed
rings R = f R0; : : : ; RK g to be disjoint, we have to prevent
them from sharing any common triangles. This requirement
is implemented in the following way: when we compute the
candidate setCk+1 for ring Rk+1 , all triangles of the already
computed ringsR0; : : : ; Rk are prevented from being cut in
the upcoming graph cut optimizations by setting the cost
of their edges to in�nity, i.e., � (ei ) = 1 ; 8ei 2 t j ^ 8 t j 2
Rk ^ k = 0 ; : : : ; k � 1. The bottom row of Fig. 2 depicts a
set of 15 precomputed rings generated for each of the four
choices of edge costs that are illustrated in the top row.

Notice, that when the candidate set Ck is computed to
select the ring seamRk from, the Ci 2 Ck cannot intersect
but can only touch each other due to the shortest path
property of the graph cut optimization.

3.3. Mesh editing

After each manipulation that the user applies to the
modeling handle, we have to decide if we stick to the
elastic deformation resulting from the Laplace editing or
if the current mesh distortion calls for additional plastic
deformation. This decision is made on a per-sector basis
(cf. Sec. 3.3.1). In the following,A j denotes asector, i.e.,
all vertices, edges, and triangles within the mesh area en-
closed by two neighboring sector contoursSj and Sj +1

(cf. Sec. 3.2.1). We measure the distortion of a sectorA j

and in the case that it exceeds a certain tolerance thresh-
old, we perform additional plastic deformations onA j by
executing, i.e., splitting or collapsing an adequate number
of precomputed seams withinA j . The resulting changes
in the mesh topology require an adaptation of the Laplace
deformation. Details are given in Sec. 3.3.2.

The distortion of a sector A j is de�ned as the di�erence

vj
vj +1

Fig. 4. Graph cut setup for the computation of a single candidate
seam Ci running through the edge ei = ( vj ; vj +1 ) of the yellow
polyline L . The vertices of L as well as the vertices on the boundaries
of the modeling region are either connected to the source (green) or
sink (red). Computing the minimum cut yields a set of edges (orange)
that de�ne the triangle strip constituting the candidate ring Ci .

of its area in the deformed meshM 0 and the undeformed
meshM

d(A j ) = area(A0
j ) � area(A j ) (5)

with area(A j ) =
P

t i 2 A j
area(t i ). If d(A j ) < 0, the sector

A j has been compressed, ifd(A j ) > 0, it has been stretched.

3.3.1. Plastic seam carving
The two questions that remain to be answered are which

seams to execute in a sector and when to execute them. As
for the former question, the rings have been generated in
order of increasing distortion that will be introduced when
their inner edges are split or collapsed during mesh edit-
ing. This ordering has been established in a global fash-
ion by considering the distortion caused by an entire ring.
However, it may occur that although ring Rl globally in-
duces less distortion than ringRk , l 6= k, the latter may
induce less error when we restrict the evaluation of the er-
ror to that segment of Rk that falls within A j , i.e., Rk jA j

=
f t i 2 Rk \ A j g. Hence, we determine the order, in which
the precomputed rings will �nally be executed on a per-
sector basis: summing up the costs of those inner edges
constituting the ring segment Rk jA j

yields the distortion it
will induce on the sectorA j when being split or collapsed:

err (Rk jA j
) =

X

e2 R k \ A j

� (e): (6)

Then, the per-sector order in which the precomputed rings
will be executed in a sectorA j is established in increasing
order w.r.t. the distortion measure in Eq. 6. Our exper-
iments showed that globally precomputing the rings and
executing the ring segments in a per-sector order yields
a good compromise between mesh quality and distortion
compensation.

Having individually established the order in which the
rings have to be executed in each sector, we determine the
index of the next ring to be executed in a sectorA j as fol-
lows: we store a tuple (k; b) for A j where the �rst compo-
nent holds the index of the last ring that has been executed
(e.g., Rk ) and the second componentb 2 f split; collapseg
indicates, which type of operation has been performed, i.e.,
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whether Rk has been split or collapsed. When the next ring
has to be executed inA j , its index is derived from this tu-
ple: if we have to perform the same operation as the last
ring Rk , we executeRk+1 . If we have to perform the inverse
operation, we undo the last operation by executingRk in
A j again. A ring is executed in a sectorA j by performing
the split or collapse operation on the ring segmentRk jA j

.
As for the second question about the point in time when

the next seam has to be executed in a sector: after the set of
rings R has been precomputed, we determine the areas of
all rings Rk 2 R falling within each sector A j ; j = 0 ; : : : n

area(Rk jA j
) =

X

t i 2 R k j A j

area(t i ):

with k = 0 ; : : : ; K; i = 0 ; : : : ; n. As soon as the sector dis-
tortion (cf. Eq. 5) is larger than the area of the ring segment
falling within A j , i.e., jd(S0

j )j > area(Rk jA j
), the next ring

Rk is executed inA j : we split Rk jA j
in the case thatd(A0

j ) >
0 and collapseRk jA j

in the case that d(A0
j ) < 0. This way,

collapsing a seam eliminates all triangles within an area of
roughly the same size by which the sector area decreased
during the elastic deformation while splitting the seam cre-
ates new triangles within an area of roughly the same size
by which the area increased. A seam collapse is executed by
collapsing every second inner edge, thereby eliminating its
two adjacent triangles. A seam split is executed by splitting
every inner edge, thereby adding two new triangles.

The number of sectors is a parameter for a smooth tran-
sition of the mesh resolution from regions where seams have
been split to regions where seams have been collapsed.

3.3.2. Weighted Laplace editing
We use the well-established Laplace editing approach for

elastic mesh deformation which, in its original form, solves
the optimization problem kLx 0 � Lx k2 ! min in the least
squares sense for the deformed vertex positionsx0 subject
to constraints introduced by the boundary vertices of the
modeling region. Here,L is the Laplace matrix and x are
the original vertex positions in the rest pose.

Since our main goal is to preserve mesh features as well
as possible, we slightly modify the linear Laplace system as
follows: as row i of L encodes the one-ring neighborhood
of vertex vi , we can control the vertex' sti�ness during de-
formation by multiplying row i with a sti�ness factor that
takes the vertex saliency into account:

sti�ness(vi ) = s � ang(v) + � (7)

with ang(v) as de�ned in Eq. 4, s 2 R being a scaling
factor that controls the impact of the sti�ness and � being a
regularization term to avoid that a row in L is scaled by 0 in
the case that all normals are nearly parallel. This sti�ness
factor allows us to distribute the deformation distortion
over the mesh in a way that the one-ring of a non-feature
vertex undergoes a heavier distortion than the one ring of
a feature vertex.

vs

vt

vlvl vrvr
vnew

split

collapse

vsvs

vtvt

vlvl vrvr
vnew

split

collapse

(a) (b)

Fig. 5. (a) A collapse operation on an edge of a seam together with
its inverse split operation. (b) A split operation on an edge of a seam
together with its inverse collapse operation.

A plastic deformation, i.e., a collapse or a split of a seam
of triangles changes the mesh's topology and stretches or
compresses the edges adjacent to the involved vertices. To
compensate for these length changes, we have to adapt some
edge weights in the Laplace matrix : if, on the one hand, an
edge is collapsed and is subsequently eliminated from the
Laplace system, the edges in its vicinity should overtake the
function of the eliminated one. Hence, their \tension" has
to be increased by adequately updating their corresponding
edge weights in the Laplace matrix. If, on the contrary, a
new edge is introduced into the system by a split operation,
the tensions of the edges in its vicinity have to be decreased.
This way, the metric of the original rest pose is preserved
as well as possible while topology as well as length changes
are incorporated into the optimization.

For the weighted Laplace deformation, we hence have
to re-build the following linear system after every seam
execution:

kL M � x0 � L init � xk2 ! min : (8)

Here, L init is a Laplace operator with positive weights
(cf. Wardetzky et al. [21]) which, together with the posi-
tions x of all vertices in M , de�nes the Laplace vectors. The
Laplace matrix L M initially equals L init but each time it
has to be rebuild in order to account for topology changes,
the weights of all edges a�ected by the splits and collapses
are scaled by factors that depend on the updated geometry.

Figure 5 illustrates the topological and geometrical mod-
i�cations resulting from (a) a collapse operation and (b) a
split operation together with their inverse operations that
restore the previous setting. Split or collapse operations
not only delete or insert edges but also change the lengths
of other edges. Interpreting the Laplace matrix as a mass-
spring model, we can apply Hooke's law of elasticityF =
D � �l , which relates the forceF exerted by a spring to
the distance �l it is stretched by a spring constant D . To
account for the changes in edge lengths, we hence have to
scale the spring constants by the length change which is
equivalent to scaling the edge weights in the Laplace ma-
trix L M . Hence, the updated weight! 0

i;j of an edgeei;j =
(vi ; vj ) can be computed from its current weight ! i;j in a
physically plausible fashion by scaling it proportionally to
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the edge's length change:

! 0
i;j =

kv0
j � v0

i k

kvj � vi k
� ! i;j (9)

where vi ; vj are the vertex positions before andv0
i ; v0

j af-
ter the split/collapse. This yields the desired behavior that
stretched edges (or their associated springs) exert an in-
creased force within the mass-spring system while com-
pressed edges exert a decreased force.

In the following, we quickly describe the weight updates
for all edges a�ected by split and collapse operations. In
case of an edge collapse (cf. Fig. 5 (a)), the weights of all
green edges adjacent to the new vertexvnew are updated
using Eq. 9. For the blue edge connectingvnew with vl , we
choose the average of the updated weights forel;s and el;t ,

i.e., ! 0
l;new = 1

2

h
kv l � vn k
kv l � vs k ! l;s + kv l � vn k

kv l � v t k ! l;t

i
. The updated

edge weight! 0
r;new is obtained analogously. The actual po-

sition of vnew is set to the point with minimal squared dis-
tance to the planes spanned by all incident triangles ofvs

and vt , i.e.,
X

plane( t i ) ;t i 2 N 1 (vs ) [ N 1 (v t )

pT
new � Qi � pnew ! min

where Qi is the fundamental error quadric of the plane
spanned by a triangle t i (cf. Garland and Heckbert [9]).
Choosing this point over, e.g., the midpoint of the edge
(vs; vt ) better preserves the shape of the one-ring neighbor-
hoods of the edge's vertices and hence introduces the least
amount of smoothing. The inverse operation splits the ver-
tex vnew into its original vertices vs and vt whose previ-
ous positions need to be reconstructed in order to properly
undo the collapse. We therefore store some additional infor-
mation with each collapse: First, we store the displacement
vector betweenvs and the center of gravity of its one ring
vertices, excludingvt since its position will be unknown in
the reconstruction (analogously for vt ). Second, we store
the edge weight! s;t together with the edge's length prior
to the collapse. Scaling! s;t by the length change in the re-
construction yields ! 0

s;t .
In a split operation (cf. Fig. 5(b)), the edge es;t is split

at its midpoint by vnew into es;new and enew;t and their
edge weights are hence set to! 0

s;new = ! 0
new;t = 1

2 ! s;t . The
weights ! 0

l;new and ! 0
r;new of the edges connectingvnew to

vl and vr , respectively are set as described for the collapse
operation. The operation reversing the split collapses the
red edgeenew;t into the vertex vt (or alternatively enew;s

into vs). Then, only the weight of es;t must by updated using
Eq. 9 since the blue edges are eliminated in the collapse.

A typical problem arising in the context of mesh simpli-
�cation is that reversing an earlier operation may be im-
possible due to a modi�ed vertex neighborhood resulting
from other mesh modi�cations. Such situations can occur
near sector boundaries in our system (cf. Sec. 3.3.1). We
follow the approach of El-Sana and Varshney [7] in order
to detect and resolve them.

4. Results

To illustrate the quality of the surface meshes under
deformation, we compare our results with the results ob-
tained by the following base-line reference solution: as our
technique combines elastic with a plastic deformation, the
reference solution should provide both properties as well.
Hence, we obtain our reference solution by using weighted
Laplacian editing but we recompute the Laplace matrix
after every frame. We therefore reset the edge weights as
�! + (1 � � )! 0, where! are the weights obtained from the
undeformed meshM , ! 0 are the weights recomputed in the
deformed meshM 0, and � 2 [0; 1] is some manually opti-
mized coe�cient. The vertex sti�ness (cf. Eq. 7) is used in
the reference solution and in our approach alike.

We tested our method on a variety of input models. In
the following images, the red line marks the boundary of
modeling and �xed region. Please also refer to the accom-
panying video for the entire editing sessions in which the
presented results have been generated. Figure 6 shows some
results for �ve di�erent input models where the top row
depicts the model together with the precomputed set of
geometry seams, the middle row shows a result generated
with the reference solution and in the bottom row the re-
sult obtained with our technique is shown.

We edited the back armor of theArmadillo (a) by moving
the center plate towards the model's lower back. The refer-
ence solution generates self-intersections in the compressed
areas. Our approach, however, avoids these artifacts by col-
lapsing enough seams in areas with low saliency, thereby
protecting the features from self-intersecting. As parame-
ters for the edge costs (Eq. 3), we chose� = � = 0 :1; 
 = 1
while no additional sti�ness (Eq. 7) was introduced.

We shortened one arm of theOctopus (b) by moving the
handle closer to the animal's head. Since in the Laplace
approach, the mesh distortion decreases with increasing
distance to the handle (cf. our argument on the harmonic
�eld in Sec. 3.2.1), the suction cups close to the handle are
signi�cantly distorted. Furthermore, the result exhibits a
sharper bend of the arm. Applying our technique instead
(with � = 1 ; � = 
 = 0 :2, s = 10), most of the distor-
tion was absorbed by the low saliency regions and hence
the suction cups maintained their circular shape. Further-
more, the bend of the arm has not increased in order to
accommodate the distortion.

We curled up the tail of the Seahorseas depicted in Fig. 6
(c). As for the octopus, the distortion introduced by the
reference solution is mostly located in regions close to the
handle, causing an undesired strong bend. The split and
collapse operations executed in this area by our approach,
however, accommodated the distortion and hence signi�-
cantly reduced the strong notch close to the handle. For
the edge costs, we chose� = 0 :5; � = 0 :25; 
 = 10 while
the scaling factor in Eq. 7 was set tos = 10.

The Knot with Stars (Fig. 6 (d)) presents a special case
w.r.t. the con�guration of modeling and handle area as the
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(a) (b) (c) (d) (e)

Fig. 6. Comparison of the results obtained on �ve di�erent models. Top row: precomputed set of geometry seams. Middle row: results obtained
with the reference solution (cf. Sec. 4). Bottom row: results obtained wit h Geometry Seam Carving. (a) The gaps between the individual
plates on the Armadillo's back are pushed together s.t. self-intersections occur. Our method accommoda tes the deformation by collapsing a
su�cient amount of seams s.t. the gaps maintain an appropriate widt h. (b) In the reference solution, the circular shape of the suction cups
on the arm of the Octopus is signi�cantly distorted. In contrast, their round shape is preserved in the result obtained with our technique. (c)
The tail of the Seahorse shows a strong notch in the modeling region close to the handle. Colla psing an adequate number of seams in this
area using our technique avoided such a defect. (d) After moving the han dle upwards, the Knot with Stars has an elliptic instead of a round
arc with distorted features. Our result, however, shows a more uniform cu rvature distribution since splitting seams in the vicinity of the �x ed
region enabled the ROI to expand not only upwards but also to the sides. (e) Spreading the wing of the Welsh Dragon widened the slender
bones spanning the wing whereas our technique preserved their width since the distortion was mostly absorbed by the low-saliency regions in
between the bones. Furthermore, the length of the bones in the reference solu tion has decreased whereas in our result, their length has been
preserved due to additional degrees of freedom introduced by seam splits. For a better illustration, please refer to the accompanying video.

latter divides the modeling region into two components.
Hence, a single seam runs through only one of these compo-
nents. Precomputing the seams for both components sep-
arately (with � = 0 :5; � = 0 :25; 
 = 5), however, allows
us to properly handle this kind of con�gurations. During
editing (without additional sti�ness), we pulled one arc of
the knot upwards. Splitting the precomputed seams in the
area close to the �xed mesh region (yellow, orange, and
red seams) introduced additional degrees of freedom and
thus enabled our approach to expand the modeling region
not only upwards, i.e., in the direction of the handle move-
ment, but also in the directions of the split edges, namely
to the sides. After deformation, the arc hence has a nice
circular shape with a uniform curvature distribution while
the shape of the stars has been preserved. The reference
solution, however, yields a more elliptical arc with a cor-
responding non-uniform curvature distribution since it ex-

panded the modeling region only upwards. Furthermore,
the shape of some stars is visibly distorted.

We further spread one wing of theWelsh Dragon model
(Fig. 6 (e)). In the result obtained with the reference so-
lution, the slender bones spanning the wing are broad-
ened since the distortion is distributed homogeneously over
the modeling region. In contrast, our method (with � =
0:25; � = 
 = 1, no additional sti�ness) distributes the dis-
tortion mostly in the low-saliency regions in between these
bones and hence preserves their slender shape much bet-
ter. Furthermore, the length of the bones in the reference
solution has decreased whereas in our result, their length
has been preserved due to the additional degrees of freedom
that have been introduced by splitting the seam edges.

Note, that other con�gurations of modeling and han-
dle area can be supported by providing a reasonable har-
monic �eld (Sec. 3.2.1) and a respective graph cut setup
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(Sec. 3.2.3). On the plane model (Fig. 1), e.g., one could
select everything but a few rows of triangles on the left
boundary as modeling region, with some rows of triangles
on the right boundary constituting the handle. The graph
cut then computes a cut running from the top to the bottom
boundary. In this setting, the precomputed seams would be
open instead of closed triangle strips.

5. Conclusion

We presented a mesh deformation technique that com-
bines elastic, Laplacian based mesh deformation with plas-
tic mesh modi�cations. A precomputed set of geometry
seams is split or collapsed in those areas of the mesh that un-
dergo strong distortion. Since per construction, the seams
run through low-saliency regions of the mesh, these regions
absorb most of the deformation energy which hence lightens
the distortion in regions that exhibit many features. The
topological modi�cation resulting from splitting or colla ps-
ing the seams are integrated into the elastic Laplace defor-
mation in a physically plausible way following Hooke's law.

Implementing a plastic deformation scheme using only
Laplacian editing would require recomputing the edge
weights after every deformation step (as in our base-line
reference solution). Resetting the edge weights is equiv-
alent to resetting the spring constants in the underlying
physical mass-spring model and hence emulates a plastic
deformation as the rest pose is rede�ned. However, this also
requires rebuilding and refactorizing the Laplace matrix.
Hence, while in both approaches the plastic deformation
comes at these additional costs, our plastic deformation
adopts the mesh tessellation to the extent of the surface
deformation and hence provides a better mesh quality.

As future work, we would like to align the quad grid
spanned by the iso- and sector contours to the model's prin-
cipal curvature directions. We expect that such a grid out-
lines sectors that cover the modeling region in a way that
the ring segments falling within the sectors are even better
positioned w.r.t. the overall shape of the model. Further-
more, we would like to investigate other criteria to measure
the distortion of a sector since the area di�erence does not
necessarily capture all possible distortions that sector tri-
angles can su�er from (e.g., shearing may not be captured)
and that would require seam execution in order to better
accommodate the distortion.
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