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Figure 1: (a) Triangular surface mesh of a font acquired with a laser scanner. The mesh exhibits numerous small scale artifacts and handles
and is of (the incorrect) genus 8. (b) Parametrization based quad meshing at a coarse target edge length results in a heavily distorted
parametrization with undesired degeneracies and too many singularities too close to one another, even though a state of the art technique for
detail suppression [Ray et al. 2009] has been used. (c) Using our method, a parametrization reproducing only features suitable for the target
edge length is computed. (d) The resulting quad mesh has the correct genus 0.
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The most effective and popular tools for obtaining feature aligned g N

quad meshes from triangular input meshes are based on cross eld .

guided parametrization. These methods are incarnations of a con-1  Introduction

ceptual three-step pipeline: (1) cross eld computation, (2) eld-

guided surface parametrization, (3) quad mesh extraction. While Automatic quad remeshing remains a topic of great interest and
in most meshing scenarios the user prescribes a desired target quaninportance. This is especially true as the proliferation of geome-
size or edge length, this information is typically taken into account try acquisition equipment progresses. For the resulting wealth of
from step 2 onwards only, but not in the cross eld computation raw data, powerful geometric processing methods are required to
step. This turns into a problem in the presence of small scale ge-re ne it into quad meshes suitable for further use and manipula-
ometric or topological features or noise in the input mesh: closely tion. Especially eld-guided parametrization-based quad meshing
placed singularities are induced in the cross eld, which are not methods such as Mixed-Integer Quadrangulation [Bommes et al.
properly reproducible by vertices in a quad mesh with the pre- 2009], QuadCover [Elberer et al. 2007], and Periodic Global
scribed edge length, causing severe distortions or even failure of theParametrization [Ray et al. 2006] have proven to be powerful and
meshing algorithm. We reformulate the construction of cross elds versatile. This family of methods typically follows a three-stage
as well as eld-guided parametrizations in a scale-aware manner approach as illustrated in Figure 2 (a): First a cross eld is con-
which effectively suppresses densely spaced features and noise otructed on the input surface which de nes guiding information for
geometric as well as topological kind. Dominant large-scale fea- the quad element orientation as well as singularity placement. Next,
tures are adequately preserved in the output by relying on the unal-the surface is parametrized into an integer grid map (as de ned in
tered input mesh as the computational domain. [Bommes et al. 2013a]) so that the canonical integer grid in the pa-
rameter domain induces a quad mesh on the input geometry. Here,
the singularities in the guiding eld translate into irregular vertices.
An actual quad mesh is extracted from the parametrization in the
nal step [Ebke et al. 2013].

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling

Through the guiding eld, these methods allow for a great amount
of user control and since both, the computation of the guiding eld
and of the parametrization, can be formulated as well behaved op-
timization problems [Ray et al. 2008; Bommes et al. 2009], good
quality solutions can be obtained ef ciently. Thanks to these prop-
erties, these methods not only enjoy popularity amongst researchers
but are also recently nding adoption in modeling and CAD soft-
ware products.
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ric or topological (small handles) kind, causes severe problems. In
the best case, such suboptimal input results in di
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can be followed in order to address this problent,

. . : Figure 2: Omitting the colored boxes, the left side (a) illustrates the
1. pre-process the input geometry in order to

make it conform to the requirements of thg/'ﬁQ
qguad meshing algorithms, or

2. make the meshing algorithms capable of
equately dealing with ill-behaved geometry.

One approach following Paradigm 1 is manual pre-processing,
i.e. editing of the input mesh in order to make it well-behaved. For

generic parametrization based quad meshing pipeline. The red ad-
ditions (b) re ect Paradigm 1 to deal with ill-behaved input meshes.
The blue addition (c) re ects the method from [Ray et al. 2009]
which may or may not be combined with (b). The right side (d)
illustrates our approach which is in line with Paradigm 2.

1.1.1 Quad Remeshing

the lack of viable alternatives in many scenarios, this (often tedious)
work ow is not uncommon. Where automation is desired or re- ] ) ) )
quired one could simply treat all types of geometric detail as noise An overview of different quad remeshing methodologies can be

and apply a smoothing algorithm to the input geometry, with the found in the survey _[Bommes et a!. 2(_)13b]. Our solution applies to

goal of removing or attenuating it. Such approaches can lead to ac-the class of eld-guided parametrization-based methods, rst pro-

ceptable results—if a suitable choice from the plethora of smooth- Posed in [Ray et al. 2006], subsequently improved iralfi€rer

ing methods (ranging from simple Laplacian smoothing [Taubin €t &l. 2007] and [Bommes et al. 2009], and extended in [Kovacs

1995; Desbrun et al. 1999] to such advanced approaches as the re€t al. 2011; Panozzo et al. 2014]. In such methods, the overall quad
cently introduced conformal Wilmore ow based methods [Crane rémeshing problem is split into three sub-steps, namely cross- eld

et al. 2013]) is made. Unfortunately, there is no generally accepted computation, integer-grid parametrization and quad mesh extrac-
“best” method. Which method to pick depends on which prop- tion out of the parametrization. For the last step, recently a ro-

erties are most important for a speci ¢ scenario: volume preser- Pust method has been proposed in [Ebke et al. 2013] whose speci ¢
vation, feature preservation/restoration, few additional parameters, Properties we exploit in Section 6. Furthermore, techniques to in-

2013a; Lipman 2012; Myles et al. 2014].

Additionally, since unwanted handles (“topological noise”) remain

persistent under geometric smoothing, all of the mentioned meth- Since the eld-guided pipeline proved to be powerful, generaliza-
ods may have to be accompanied by topological mesh repair al-tions to different input data like point clouds [Li et al. 2011] or
gorithms (e.g. [Guskov and Wood 2001; El-Sana and Varshney range scans [Pietroni et al. 2011] were developed as well. Our ap-
1997; Zhou et al. 2007; Bischoff et al. 2005]) which make such proach can similarly be understood as a generalization of the above
an approach even more challenging to implement and to tune, im- methods to the case of input geometry that contains detail smaller
pact the run time and potentially introduce new artifacts as outlined than the desired resolution of the output quad mesh.

in [Attene et al. 2013]. This variation of the generic quad meshing

pipeline is illustrated in Figure 2 (b). 1.1.2 Cross Fields

In the light of these complications implied by Paradigm 1 we follow
Paradigm 2 and introduce a general solution to make parametriza-
tion based quad meshing algorithms perform well on ill-behaved
input geometry. Our approach requires no additional parameters,
which would need model or application dependent tuning. Further,
it is non-destructive in the sense that it uses the original, unaltered
input mesh as its computational domain which allows for high geo-
metric delity of the output mesh. Finally, our approach is simpler
to implement and more ef cient than the advanced additional meth-
ods required by Paradigm 1. Figure 2 (d) illustrates the conceptual
pipeline behind our approach.

Apart from complete quad remeshing pipelines there are several
works that solely focus on the task of cross eld generation [Hertz-

mann and Zorin 2000]. Some rely on prescribed singularities [Pala-
cios and Zhang 2007; Ray et al. 2008; Crane et al. 2010; Lai
et al. 2010], others determine a suitable singularity con guration

automatically [Bommes et al. 2009; Panozzo et al. 201 )l

et al. 2013; Diamanti et al. 2014]. All these methods search for
the smoothest cross eld (in terms of some discrete eld curvature

notion) potentially subject to certain constraints. In addition, there

are methods which only compute a singularity con guration but no

cross eld [Ben-Chen et al. 2008; Springborn et al. 2008; Myles

and Zorin 2012].
1.1 Related Work

Since none of these methods incorporate an explicit concept of
Our work builds on previous research in the areas of quad remesh-scale, noise and small scale detail in the geometry, they necessitate
ing and the construction and processing of cross elds on surfaces. numerous singularities within the smoothest available cross eld.
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Figure 3: The two rows of pictures show an orthographic view of different cross elds for the same section (red frame) of the cuboid with
geometric noise depicted on the left. As we increase the standard deviatbrihe Gaussian kernel used for the Gaussian curvature
smoothing (top row, [Ray et al. 2009]) or for the normal smoothing (bottom row, our approach) the cross elds become smoother. While
using our approach (bottom) a perfectly smooth, straight cross eld is obtained for increasihgemains imperfect for any when using

the approach of [Ray et al. 2009] (top) due to the speci ¢ cross orthonormality concept. Our crosses, however, are de ned in ltered tangent
planes (which here converge to the viewing plane). The pictures at the far right demonstrate the behavior for another mesh with periodic
detail structures rather than noise. Again, a straight cross eld is constructed by our method (bottom), while the cross eld computed using
[Ray et al. 2009] (top) exhibits severe repetitive distortions.

The only manner in which some of these methods take some form straints) are then expressed and evaluated with respect to this setup
of scale into account is through the adjustable radius of the em- based on alternative normals and tangent planes. This way we are
ployed principal curvature direction estimators that provide initial able to effectively prevent small scale geometric detail from being
directions. The further processing, modi cation, smoothing, inter- carried over into the guiding eld or the parametrization, and thus
polation, etc., is then, however, again performed directly at the scale into the resulting quad mesh.

of the input mesh resolution. . )
When constructing the alternative normal eld we go so far to even

The cross eld related technique presented in [Ray et al. 2009] can make use of local inversions, where areas in the parameter do-
be seen as a rst approach into the direction of Paradigm 2 intro- main become negative. This happens in such a manner that ulti-
duced above. In that work, the cross eld structure is controlled mately small scale folds, protrusions, and even topological handles
by rst smoothing the scalar eld representing the Gaussian curva- are “ironed over” and attened (thus appropriately cancelled) rather
ture of the input mesh, and then constructing a matching tangentialthan unfolded into the parametric domain. This prevents distortions
transport with respect to which the smoothness of a cross eld can and problematic singularities that would otherwise occur. Figure 5
be measured. The amount of Gaussian curvature smoothing in u- illustrates this idea.

ences the structure of the resulting cross eld and, as demonstrated . . .

by the authors, this allows to effectively reduce the number of sin- DU to this novel robustness to ill-behaved input, the need for ex-
gularities which are usually caused by small scale details in the in- PENSive pre-processing is eliminated.

put surface. However, this method only addresses the cross eld

construction step, where tangential transport suf ces to measure 2 Concept

smoothness. For the quad meshing scenario also the parametriza-

tion step needs to be considered. Furthermore, this method usesrhe idea behind our approach may be pictured using the following
crosses which are orthonormal with respect to the original surface conceptual image:

while the eld smoothness is measured with respect to the tan-

gential transport of the intrinsically smoothed surface. This dis- State-of-the-art approaches construct cross elds and parametriza-
crepancy can lead to distortions (cf. Figure 3) which carry over to tions which are smooth with respect to the standard metric on the
the eld-guided parametrization. Finally, note that only geomet- (ill-behaved) input surface. Our approach can be thought of as
ric ill-behavedness is addressed: the Gaussian curvature induced by

small handles in the input geometry cannot be cancelled out locally
through smoothing. As a result, the corresponding singularities do |-
not vanish but are only slightly dispersed. This problem is illus-
trated in Figure 4.

1.2 Contribution

To overcome the problems of the existing methods we propose

a solution which equips the input mesh with an alternative (non- Figure 4: (a) A small scale handle and the cross eld singularities
orthogonal) normal eld that respects the desired target mesh reso-surrounding it (b) remain persistent under smoothing. (c) Using
lution and suppresses detail too small to be adequately reproducedthe method from [Ray et al. 2009] the singularities are dispersed
Varying target resolution (a so-calleizing eld) can be taken into slightly but persist. The small spike in the background is effectively
account as well. All relevant aspects (like eld smoothness, eld suppressed using either method. As shown in Figure 12 this con g-
orthogonality, eld normality, parametrization fairness, and con- uration is properly handled by our method.
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Figure 5: Geometry with small scale features (a) is parametrized ab c de
(b) in order to extract a mesh from the parametrization (c). The
upper row illustrates the process with a small target edge length
where the feature (red) is reproduced in the output mesh (c top). In
the bottom row a large target edge length is chosen. Our method
deliberately creates a partially ipped parametrization (b bottom).
Flipped and regular elements in the parametrization cancel out one
another so that the small scale feature is not reproduced and does
not introduce length distortion in the output (c bottom).

Figure 6: lllustration of the well-behaved shell (grey) with its
smooth normal eld (red). Measured with respect to this eld, seg-
menta is much shorter than segmeht although they are of the
same length in the metric of the original surface (blue). Segment
even has a negative length, basically cancelling out the fold. The
same holds for segmernttsinde, effectively cancelling out the small
handle.

instead measuring smoothness (and orthogonality, normality, etc.)

\tl;lgthel 3 3;"5”?%%%?(2;%2 |Sn ulr:rio l:;:g'gg Itrr:ethsi:r;?]zlal' L?]'St;]ss”(lzza 2012; Bommes et al. 2013a; Ray et al. 2009; Campen and Kobbelt
: 9 P g S €Ny 2014b; Li et al. 2011; Pietroni et al. 2011]. In particular, we
in 3D also angles) are not measured in a standard, Euclidean man-

o make use of the uni ed mixed-integer formulation introduced in

ner but, conceptually, within a subspace orthogonal to a vector eld
. > ! =" [Bommes et al. 2009]

(red) — which we construct as a discrete lItered version of the in-
put's normal eld (cf. Section 3). To achieve this, we basically ex- We thus use the following generic quad remeshing pipeline for
press all measurements with respect to local projections of the orig- demonstration:
inal geometry into the Itered tangent planes de ned by the ltered o ) o o
normals. This projection can even affect the orientation. In Fig- 1. estimation (and Itering) of principal curvature directions, or
ure 6 the intriguing properties of this concept are illustrated. Most manual speci cation of constraint directions,
importantly, we also de ne crosses to live (and be orthonormal) on
the lItered tangent planes, rather than on the surface itself.

N

. construction of a smooth cross eld based on these directions,

All formulations are such that they are equivalent to traditional for- 3. parametrization of the input mesh guided by the cross eld,

mulations for the case that the Itered normal eld is orthogonal to 4. extraction of the quad mesh de ned by the canonical integer
the given surface. grid in the parameter domain.

It is worth noting that the projections of the mesh's individual faces  a| four steps are affected by our approach, most importantly of
into their respective ltered tangent planes do not necessarily con- - rse step 2 and 3. In the following we detail the construction of

stitute a globally consistent smooth surface. In our approach We ihe jtered normal eld (Section 3) and then explain how to refor-
can, however, conveniently restrict ourselves to local considera- qate the individual steps of the pipeline accordingly.

tions only — of individual triangles (for the parametrization), pairs

of triangles (for cross eld smoothness), or 1-rings (for curvature

evaluation). Therefore, neither the conceptual shell nor a complete3 Smooth Normals

hypothetical surface orthogonal to the Itered normal eld actually

need to be constructed in our method. For a meshed surfadd = (V;E;F) with verticesV, edgesE,

Note that in certain cases (when there are no folds and no handles)faceSF’ we compute an altemative, Itered normal el =
; ; : . . fA1;:::; A9 (which is detached from the actual surface, i.e. not
smoothing of the input mesh as discussed in Section 1 can be con-

sidered as constructing a surface which is (more or less) close tonecessarlly orthogonal). The key idea behind this is that geometric
orthogonal to the Itered normal eld — but whose normal eld is features are re ected by high variance in the original normal eld
typically less smooth as it inherently obeys the integrability condi- N . In order to prevent sets of features which are too densely spaced
) . . . : to be representable by the desired target element size from carrying
tion. From a thec_)retlcal perspective this global consistency of the over into the cross- eld, we apply a generalized Weierstrass trans-
surface is appealing. However, it is unclear whether this would lead form to this normal eld’ l.e. we convolve it with a suitably sized

to any practical advantage. We only identi ed and observed disad- A

vantages (in addition to the restricted applicability) as discussed in Saussian kernds , to obtain a new normal el where densely
Sections 1 and 7. spaced features are merged (cf. Figure 7):

z
2.1 Setup K (p)=(N G )p)= N(q)G (dist(p q))dq
M
Our approach is quite generic and could be used in conjunction with
with various eld generation methods and various parametrization 1 x2=2 2)
strategies. We demonstrate it here using the period-jump based G (x)= > 2

cross eld representation proposed in [Li et al. 2006] and the eld-
guided parametrization functional proposed in [Ray et al. 2006; 1A variation of the globally optimal cross eld construction approach of
Bommes etal. 2009], as these are quite prototypical: they have beenknoppel et al. 2013] could also be used, but does notimmediately allow for,
used in numerous follow-up works like [Ray et al. 200&Iserer e.g. direct control over singularity positions, indices, or sparse alignment
et al. 2007; Bommes et al. 2009; Crane et al. 2010; Panozzo et al.constraints — which is often of interest in the quad remeshing context.
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Figure 7: Top: features in the normal eld (modeled as Dirac
impulses) closer to one another than the target edge leaght

in the quad meshing pipeline is unwanted. In agreement with the
theoretical justi cation, our experiments con rm that this choice of
generally yields very good results. i A
I

We refer to the tangent planes de ned by the I-

tered normalsh; = N (f;) as ltered tangent

planes in the following. The Itered tangent plan

can be computed at almost no computational ov

head as the neighborhood determination has to b

done for the curvature estimation (shape operator, etc.) anyway.

It is worth noting that averaging of vertex normals from 1-ring face
normals (which can be interpreted as a simplistic variant and special
case of our normal Itering) was reported to already show bene cial

merged into one maximum when convolved with a Gaussian kernelgffects on the cross eld structure [Myles et al. 2010].

with s=2. Bottom: features with wider spacing are reproduced
as two distinct maxima in the convolved eld.

wheredist(p Q) signi es the geodesic distance betwegrand
g onM . Note thatfl is not a unit vector eld in general. Thus,

we renormalize it prior to any further use. In practice, we truncate

the Gaussian kernel by integrating o®r(p) M , which is the
neighborhood op up to some geodesic distance A choice of
r =2 proved suf cient.

Sizing Field  Instead of targeting a uniform quad element size
we may also take a varying element sizing &d¢ F ! R”°into
account if desired. In this casevaries per face, i.e. we havef )
(e.g. (f)= S(f)=2) and generalize to

X
Ns(f)= = N(EIG ((dist(c(f) co(f ) Ao,

f02B, (1)(f)

For the purpose of discretization we assume a constant normal pet Normal Based Cross Fields

facef , evaluated at its barycenteff ), and get
z
N (f)

0
f02B, (f) f

K (f) = G (dist(c(f) q))dq.

To draw bene t from our ltered tangent planes in the construction
of the guiding eld for the subsequent parametrization, we derive
a formulation for the cross eld formalism [Li et al. 2006] based

entirely on the ltered normal vectors.

We further approximate the integral using a sample in the barycen- Given a piecewise linear surfadé = (V;E;F) equipped with

terc(f 9 of the faced ®and obtain

N (F) N (f G (dist( c(f)

f02B, (f)

c(f ) Aro

whereA;o = A( £ B, (f)) is the area of the portion 6 which
lies inside the truncated kernel.

Note that, instead of explicitly evaluating the above sum per face, in [Li et al. 2006]: given arbitrary reference did

one can also employ diffusion ow to implicitly convolve the nor-
mals [Desbrun et al. 1999].

The standard deviation controls the breadth of the lIter kernel
G . We choose dependent on the prescribed target edge lesgth
so that features in the normal eld closer to one another thgat
merged when convolved wite . In order to derive a suitable
we imagine two in nitely sharp features with distans®n an oth-
erwise atcurve. We model these features as afundtiol®r ! R
with two Dirac impulses at s=2. As illustrated in Figure 7, if we
convolvef with G choosing too small, two distinct local max-

Itered cross eld on that surface to consist of four vectors per
face, iewx : F ! R®% k =0;123, such thatvy (fi) ? i,
and for orthonormality requirgw (fi)k = 1 andwy(f;) =

Rotgé kwo(f i), whereRot}, is a 90-degree rotation around the
axisfh. We usg(wy); as a shorthand fow (fi).

We employ the angle based de nition introduced

betweerd; andw(fi) in the Itered tangent plane.

This, so far, de nes an individual cross per face. Using so-called
period jumpsp; 2 Z per edge one speci es which of the four
directions in a face corresponds to which of a neighboring face.
This exible association enables the representation of singularities
with fractional index [Li et al. 2006].

ima persist, and we have a local minimum, i.e. positive curvature, 4 1 Measuring Smoothness

atx = 0. Choosing suf ciently large we yield negative curvature
atx = 0 and thus a single maximum:

d2 Z 1
#e . T@G (x adg 0
x=0
d? s s
, WG (x §)+ G (x+ E)X=O 0
s
. (9 2

While the choice of may be left to the user as a degree of freedom

In order to measure the smoothness of the cross eld we need a
way to measure the deviatiop between the two directions; ;

of a pair of neighboring facds;j ). Since each direction is de ned
through an angle with respect to its respective reference direction
d, by computing a signed transition anglg betweend; andd;

we can compute the deviation as

i =it it Sh i

j can be computed as the signed angle betwkeandd; after

in a setting where more interactivity is desired, we advertise the rotating them into a common plane using a hinge map [Li et al.

choice of = s=2in all settings where an additional parameter

2006]. While the hinge axis usually is the common edgeof the



pair of faces, this does not t our Itered setup as does not lie 4.3 Alignment Constraints

in the ltered tangent planes in general. Instead we compute the

appropriate hinge axi; fromthe ltered normals: The minimizer ofE smoothin Equation 1 gives us a cross eld which
is smooth but which is not yet aligned along the principal curvature

& =N N directions (or user de ned directions) where desired. To achieve

this, we can constrain some of theto prescribed angles, eliminat-

and can then evaluate ing these variables from the optimization problem. The directions
of (minimal or maximal) principal curvature are typically computed

i =1(di;& )+ ] (& ;d;). using the Shape Operator [Cohen-Steiner and Morvan 2003] and

take the form of a unit vectan; 2 R? for a facef;. Instead of

Note that when using the original normals, this de nition is equiva- Projectingm; onto the face as usual, we project it into the ltered

lent to the usual formulation. H; andn; are identical, i.e¢; has tangent plane to compute the prescribed angle
zero length, the reference directions already lie in the same plane _ ]
and j =] (di;d;) is used instead. i = 1 (di;pa; (Mi)).

With these de nitions the discrete eld curvature of the Itered ]
cross eld can be expressed as [Ray et al. 2008; Bommes et al.4.4 Period Jumps
2009]: X
E smooth = Wi |12 . 1
ej 2E

In order to evaluat& smooth in Equation 1 what is still missing are
the period jumps; . Period jumps can either be prescribed [Li
et al. 2006] (which is equivalent to prescribing singularity positions
Note that the weightsv; are simply chosen to bg in most re- and indices) or they can be left as a degree of freedom in a mixed
lated methods, e.g. [Ray et al. 2008; Bommes et al. 2009; Li et al. integer problem [Bommes et al. 2009] which is the approach we
2006]. Experiments show that the bene t of using proper weighting took in our experiments.

(depending on the face geometry) often is minuscule. In fact, for

all results presented in this work, uniform weights were used. For 4.5 Gaussian Curvature

completeness we can, however, also adapt the proper dual cotan-

gent weights introduced for this setting in [Crane et al. 2010] to our Once we have computed a minimizer Bgn.omWwe need to evalu-

setup, as we show below. ate the cross eld index(v;) for every vertex; in order to deter-
mine the position and degree of the singularities [Li et al. 2006]:
4.2 Weights
g 1 X 1 X
. ) . . F(vi) = 5— K(w)+ o+ Pi
The w; in Equation (1) account for size and shape differences 2 4

i 2E i 2E
between faces. [Crane et al. 2010] advocate the use;of= ek ek

(cot( ) +cot( ji)) °,where j and ji aretheanglesofthe \hereE, species the set of edges incident ¥, andK (vi) is
two sectors opposite & . the Gaussian curvature at vertgx In order to rely exclusively on

In our setting it is appropriate to compute these weights based onthe Itered normals, we compute the Gaussian curvature from the
the projections of these sectors into the Itered tangent planes. We Signed area of the spherical polygon spanned by the Itered normal

thus compute thprojecteddual cotangent weights vectorsi; of the faces incident te, [Meek and Walton 2000].
wj =(cot( §)+cot( ) ! 5 Parametrization
with § =] (aj ;bj ) where The second stage in the three stage pipeline is the computation of
0 0 a parametrizatiog : M!  R? guided by the cross eld from the
aj = pn;(aj ) andbj = pa; (bj ). rst stage. Ifg is an Integer Grid Map [Bommes et al. 2013a] the
canonical grid of integer iso-lines iR 2 induces a quad mesh on

Herea; andbj represent the edge vectors of thi;
sector corresponding to; on theoriginal input
mesh as illustrated on the right.s is the projec-
tion into the Itered tangent plane along the Itereda;
normalf:

M throughg.

The parametrizatiog is de ned on the mesh —the cross eld which

. is supposed to guide the parametriztion, however, lives in the |-
) tered tangent planes. We thus project the crosses from their ltered

pa, (V) =(1d A n! W. tangent planes onto the faces along the Itered normals:

Thus, ff and ﬁ are the angles of the corners oppositejtan the _ niI (Wi)i
projected images df andf; . Note that since each face is projected (Wii = (wi)i A n'a;
along its individual Itered normals, in general images of adjacent '
faces do not match up (e.qg. in Figure 1, the average length mismatch
of the common edge is 0.18%, the maximum 4.4%). Thus the pro-
jected dual cotangent weights do not exacly correspond to an actual
surface. Notwithstanding this, they do behave in a plausible way Note that this results in non-orthonormal crosses wheneyes
according to all our experiments. Furthermore, they converge to ;. The parametrization functional used in [Bommes et al. 2009] is
the original dual cotangent weights when the Gaussian kernel sizeonly suitable for orthonormal crosses. We modify it and compute
approaches 0 (! 0), i.e. when the ltered normals are identical  the parametrization as the minimizer of

to the original normals they are equivalent, and they converge to X

weights of an actual surface when pairs of adjacent Itered normals E orient = Er A(f)

converge, e.g. when!1 . f2F

Here thew are the projections of the cross eld vectavg which
live in the ltered tangent planes.



(a) (b)

Figure 8: (a) Example of an overlapping small scale detail. As
the orientation of the arrows indicates, the parametrization ips
locally. (b) After extraction of the quad mesh, ipped and non-
ipped areas have cancelled out one another and the geometric
in uence of the feature is minimal.

with
2

Es S(f)Id

with respect to the constraints laid out in [Bommes et al. 2009]. In-
tuitively, the (tangent) cross vectons, andw i are mapped from
the faces to the parametrization dom&# via the map's differ-
ential (the Jacobian g). There they should ideally coincide with
the coordinate axes and have len§itf ), as then the integer grid

rg Wwowa

mapped back to the face is aligned with the cross and has the de-

sired spacingS(f ). Note that for proper weighting the area of the
projected face$'is used irE orient.

The variational formulation readily allows for easy modi cation
and extension to include various types of useful hard or soft con-

straints, e.g. for feature alignment [Bommes et al. 2009] or connec-
tivity [Myles et al. 2010].

6 Quad Mesh Extraction

An important consequence of the non-orthonormal nature of the
projected cross- eld is that crosses can be ipped. This common

case arises when small scale features form overlaps as is illus-

trated in Figure 5 which, after normal Itering lead to ipped nor-
mals. Flipped crosses iBorient promote ipped triangles in the
parametrization which lead to so-called fold-over con gurations.
In principle, fold-overs violate the Integer Grid Map condition and

Figure 9: Two parametrizations and the resulting quad meshes
of the same input mesh. In the orthographic view (center row) it
becomes apparent that the additional area introduced by the ac-
cordion causes a length distortion using the method of [Ray et al.
2009] (left column) wheras using our method the accordion has lit-
tle effect on the parametrization (right column).

fer a way to introduce a sense of scale into the parametrization pro-
cess which can lead to distortions in the output quad mesh. Fig-
ure 9 demonstrates this effect. Here, [Ray et al. 2009] successfully
manages to suppress singularities at the small scale features but the
length distortion caused by the accordion structure is so severe that
two quad loops at half the width of the target edge length appear.
The parametrization generated by our method remains unaffected

lead to non-quad meshes. If, however, we interpret ipped triangles by the accordion.
as having a negative area that cancels out an overlapping positive

area, they neutralize the geometric in uence of the affected small
scale features which is a most welcome effect. Through our choice
of the Gaussian kernel breadth = s=2 we only provoke such
fold-overs on a scale well below the target edge lerggthSuch
fold-overs are handled in the desired way, cancelling out overlap-
ping regions, by the recently introduced quad extractor QEx [Ebke
et al. 2013] which we employ in our approach (cf. Figure 8). This
way we are able to reliably and robustly extract quad meshes from
the generated parametrizations.

It should be noted that apart from the fold-overs deliberately in-

troduced through ipped crosses, the least-squares parametriza-

tion may produce fold-overs in certain situations as detailled

in [Bommes et al. 2013a; Ebke et al. 2013]. Such fold-overs can
be prevented using a stiffening approach [Bommes et al. 2009] or
constraints [Bommes et al. 2013a; Lipman 2012]. Alternatively,

they can be admitted and gracefully dealt with using QEx. We went
with the latter option in all of our experiments.

7 Results and Comparison

In Section 1.1.2 we made the point that the method in [Ray et al.
2009] merely considers the cross eld generation and does not of-

Figure 12 demonstrates how our method is able to extract quad
meshes that are unaffected by small scale handles on the input ge-
ometry and exempli es the fact that smoothing approaches as well
as the method of [Ray et al. 2009] always reproduce such handles
with densely spaced singularities. In Figure 10 we demonstrate the
shortcomings of Laplacian surface smoothing in combination with
the stock Mixed-Integer Quadrangulation approach on a real world
laser scanned mesh with a number of topological and geometrical
artifacts.

In Figure 11 we show a number of real-world input meshes quad
meshed using our approach. The images of the plain input triangle
meshes show the singularities that are generated when computing a
non scale-aware cross eld [Ray et al. 2008] which, in all of these
examples are so densely spaced that they are only reproducible by
excessively ne quad meshes. With our method we were able to
extract sensible, watertight quad meshes at a wide range of target
edge lengths for all input meshes. Only thed®HA mesh rep-
resents a special case as explained in Section 8. ThaBisk

mesh demonstrates the ability of our method to incorporate feature
alignment constraints (amongst all other common parametrization
constraints).
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Figure 10: The FONT mesh (c.f. Figure 1) with (a) 0, (b) 30 and (c) 100 iterations of Laplacian smoothing applied to it. Computing a
cross eld using the traditional Mixed-Integer Quadrangulation approach yields 1238, 147 and 85 singularities, respectively. The excess of
singularities in the unsmoothed version (a) and thus the excessive number of integer variables in the resulting parametrization optimization
problem prevents nding a parametrization within reasonable time. The parametrizations of the smoothed versions (b) and (c) suffer from the
remaining badly placed singularities as well as from the topological noise. This can be withessed in the magni cations of a spike (top) and a
small handle (bottom). While the spike is manifold, it suffers from severe self-intersections and is thus not completely eliminated even after
a considerable amount of smoothing iterations (c). The handles and their accompanying singularities persist after any number of iterations
and thus will always ruin the parametrization. Even though the parametrization in (c) roughly looks like a quad mesh on a macroscopic level,
a quad mesh cannot be extracted out of it due to the microscopic artifacts around the singularity clusters.

8 Limitations and Future Work Our approach disregards small scale features and artifacts by at-
tenuating high-frequencies in the normal eld. Note that there is,
however, not a direct correspondence between high-frequencies and
small scale details: also sharp creases and corners carry high fre-
quencies in the normal eld — which are attenuated even if these
features are isolated enough to be properly reproduced. While dis-
tinct maxima remain at such features (cf. Figure 7) — inducing the
desired singularities — they are less pronounced after the ltering.
But as we only perform the lItering in the normal eld and preserve
the input geometry, these features can still be reproduced geomet-
rically correct. Also singularities often still arise on sharp corners
instead of somewhere in their vicinity, but there is no general guar-
antee. For further improvement in this regard it would be desirable
angles ranging from .2 up to 179.5 degrees. How- to be able to better _distinguish between features that are just too
ever, the robustness agaihslesin the input mesh is limited: while ~ Small to be reproducible and those that can be captured by the nal
the normal smoothing, cross eld computation and parametrization 9uad mesh. The use of another, e.g. bilateral or Perona-Malik type
steps do not have particular problems with holes, they may inter- of lter could be a rst _step in this d_|rect|on. A true distinction is,
rupt an integer iso-line in the parametrization, potentially leading Nowever, hardly possible already in the guiding eld construction
to missing elements in the output. This event becomes more likely Stage — it depends too much on the global structure and alignment
as the size of a hole increases relative to the target edge length. 1.e0f the parametrization — so that it seems unlikely that signi cant

our method does not go so far as to perform implicit hole lling. improvements in this regard are possible within the common three-
stage strategy for eld guided parametrization quad remeshing.

We showed that our method is robust against §eo-
metrical and topological artifacts in the input ge-
ometry. The input quality in terms of triandle
shape is not important either as demonstratgd in
the images on the right where two planar mespes,
one with a mostly isotropic triangulation, the ot
one with a highly anisotropic triangulation dre
parametrized using our method and yield alnjost
equivalent results. Also, theTBTUETTE input
mesh in Figure 11 exhibits highly anisotropic {ri-
angles with aspect ratios of up to 502 and inner

While our approach suppresses small handles,

small tunnels (which are less likely to appear as Finally, it is worth noting that our approach is not restricted to
an unintended artifact) persist. This is owed to the parametrization based quad meshing methods alone. It promises
fact that under normal smoothing the normals of a improved results in any method relying on guiding elds such as
small handle locally converge towards a at con- the quad domain construction method in [Tarini et al. 2011], the
guration whereas the normals of a small tunnel quad layout approach in [Campen et al. 2012; Campen and Kobbelt
do not. This is demonstrated on the right where 2014a] or various non-photo realistic rendering techniques [Hertz-
a small tunnel connecting the two sides of a disk mann and Zorin 2000; Umenhoffer et al. 2011]. Also, the extension
gets reproduced (i.e. the input and the output mesh to anisotropic and non-orthogonal cross elds [Panozzo et al. 2014]

both have genus 1) even though the target edge length exceeds th&hould be possible.
diameter of the tunnel by several orders of magnitude.

An assumption of our method is that wanted handles and unwanted9 Conclusion
handles in the input mesh are well separated in terms of scale. This
is because handles with a circumference close to the target edgéNe presented a method to generate cross elds and in a subsequent

length may lead to iso-lines which are parallel in step integer grid parametrizations which are unaffected by small
the parameter domain tunneling one another on the scale features and artifacts such as noise, or small handles in the
surface as illustrated on the right. In such a case input mesh. The key idea was to express and measure all involved
the extracted mesh may locally be non-manifold. quantities based on a Itered normal eld. This resulted in robust-

The BUDDHA depicted in Figure 11 is a particularly interesting ness to ill-behaved input, thus eliminating the need for expensive
mesh in this regard since its 100 handles come in almost every sizepre-processing. We showed how quad meshing in particular can
from “microscopic” to “huge”. As a result, some tuning of the tar- bene t from our method and there are further applications relying
get edge length was necessary to yield a manifold result. on guiding elds which may very well draw pro t from it, too.
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Figure 11: The inputBubbHA mesh has genus 100, the quad mesh obtained with our method has genus 9. All other approaches tested for
this paper yield too many singularities to compute a proper parametrization.DRrsON is meshed at three different target edge lengths

and corresponding . As the target edge length increases, fewer small features are reproducedidienesh yields a cross eld with 1113
singularities when applying [Bommes et al. 2009]. Using our approach we reduce this to 60 singularities and can extract a quad mesh that is
not distorted by the bumpy back. The largest bounding box edge lengths and the target edgeslesethare as indicated. All results were
computed using = s=2in accordance with Section 3.
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