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Abstract

We present an interpolatory subdivision scheme

to generate adaptiely re�ned quadrilat-

eral meshes which approximate a smooth surface

of arbitrary topology. The described method sig-

ni�cantly di�ers from classical mesh generation

techniques based on spline surfaces or implicit

representations since no explicit description of

the limit surface is used. Instead, simple a�ne

combinations are applied to compute new ver-

tices if a face of the net is split. These rules

are designed to guarantee asymptotic smooth-

ness, i.e., the sequence of re�ned nets converges

to a smooth limit surface. Subdivision techniques

are useful mainly in applications where a given

quadrilateral net is a coarse approximation of a

surface and points on a re�ned grid have to be

estimated. To evaluate our approach, we show

examples for FE-computations on surfaces gen-

erated by this algorithm.

Introduction

To perform numerical computations on surfaces,

one usually starts by discretizing the problem,

i.e., a smooth manifold is approximated by a tri-

angular or quadrilateral net. The faces of such

nets can be �lled by linear or bilinear elements

respectively. The size of the faces controls the
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quality of the approximation and thus the re-

liability of the computation. The trade-o� be-

tween computational complexity and error toler-

ance makes it necessary to adapt the grid size of

the discretization during the computation. Usu-

ally one starts with a rather coarse approxima-

tion and then iteratively re�nes the net until the

required precision is obtained.

In many applications, the underlying surface it-

self is given by a set of data points, e.g., scanned

from a real object. In a pre-processing step, the

topology has to be determined, i.e., the points

have to be connected to build an initial mesh

(reverse engineering). Then one can apply ap-

proximation or interpolation techniques to con-

struct a smooth surface �tting the data. How-

ever, to perform �nite element computations,

this surface again has to be sampled on some

(�ner) grid thus returning to a discrete repre-

sentation (cf. Fig. 1). The standard methods de-

scribe such constructions usually by means of

spline surfaces [HL93] or implicit representations

[BCX94a, BCX94b].

If we are interested only in the meshes them-

selves, it makes sense to avoid the explicit con-

struction of an interpolating surface and to de-

rive the re�ned net directly from the given one.

This technique is called interpolatory subdivi-

sion or re�nement . A re�nement scheme is com-

pletely de�ned by a set of rules how to com-

pute new vertices. These rules are usually simple

a�ne combinations of points from the unre�ned

net. If the coe�cients of these combinations sat-

isfy certain conditions [Rei95, Pra95] then the

iterative re�nement generates a sequence of �ner

and �ner nets which converge to a tangent-plane

continuous surface.

The justi�cation for this approach is that one
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Figure 1: Generation of interpolating surfaces

avoids the mathematically involved construction

of smooth parametric surfaces but uses the ini-

tial mesh obtained during the reverse engineer-

ing process directly or after some regularization.

If a re�nement of the mesh is needed to achieve

a prescribed tolerance, the net is re�ned by sim-

ple �xed rules to compute the locations of the

new points.

In the literature the term subdivision usually

refers to a more general class of algorithms

which generate sequences of polyhedral nets

[DS78, CC78, Loo87, Loo94, Kob96]. Most of

these schemes are derived from knot-insertion al-

gorithms of piecewise polynomial tensor-product

splines. In this paper we restrict ourselves to the

special case of interpolatory subdivision where

the net re�nement is achieved by inserting new

vertices and keeping the existing vertices un-

changed.

A fairly well-known algorithm of this subclass

is the buttery-algorithm of [DGL90, ZSS96].

However, this algorithm operates on trian-

gular nets only. For our application of FE-

computations on surfaces, quadrilateral (bilin-

ear) elements turn out to be more appropriate

since, especially for varying gradients, the geom-

etry is approximated better with the same num-

ber of degrees of freedom and locking problems

are overcome [BD86, SF89a, SF89b].

In the following, we �rst describe an interpola-

tory subdivision scheme for closed quadrilateral

nets which, in the limit, generates smooth (C

1

)

surfaces of arbitrary topological type. A slight

modi�cation of the scheme allows us to re�ne

open nets in which case smooth boundary curves

interpolate the given boundary polygon.

Since the computation of new vertices only re-

quires local information from the preceeding re-

�nement level, local re�nement strategies can

be applied. However, to keep the mesh C

0

-

consistent the locally re�ned net has to remain

balanced , i.e., the re�nement level of two faces

having at least one vertex in common, must

not di�er by more than 1. We refer to well-

known techniques to handle balanced quadrilat-

eral meshes [PSB90].

We derive the approximation order, i.e., the fac-

tor by which the approximation to a real sur-

face S is improved if we start the iterative re�ne-

ment on a �ner initial mesh (with points lying

exactly on S). Further, we compare the results

of FE-computations on meshes generated by our

re�nement scheme to results obtained by other

mesh re�nement techniques. The experimental

results demonstrate the practical usefulness of

the scheme.

Subdivision Rules

The following description is intended to be as

concise as possible. A more detailed presentation

can be found in [Kob95, Kob96].

Uniform re�nement of a quadrilateral mesh

means to compute one new vertex for each edge

and one for each face. We call these new ver-

tices edge-vertices (E) and face-vertices (F ) re-

spectively (cf. Fig. 2). For both types of new

vertices, we de�ne a separate re�nement rule to

determine their position.

We label the vertices as shown in Fig. 3. Let e be

the vertex associated with the edge p

0

q

0

then

e :=

4 + w

8

(p

0

+ q

0

)�

w

8

(p

�

+ q

�

); (1)

where p

�

, q

�

and w are de�ned as follows: The

value w is a tension parameter inuencing how

closely the resulting surface follows the initial

net. For w = 0, e happens to be the midpoint

of the edge p

0

q

0

. In order to guarantee the

smoothness of the limiting surface the value w

should be in the interval (0;

p

5�1]. Best results

are obtained by choosing w close to the standard
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Figure 2: Splitting a quadrilateral face by E-

vertices and F -vertices.

value w = 1 [DGL87]. The point q

�

is given by

q

�

:=

 

4

n

n�1

X

i=0

p

i

� (p

n�1

+ p

0

+ p

1

)

+

w

4 + w

(k

n�2

+ k

n�1

+ k

0

+ k

1

)

�

4w

(4 + w)n

n�1

X

i=0

k

i

!

(2)

and the point p

�

is de�ned analogously. Here, n

denotes the valence of the vertex q

0

. In the regu-

lar case, n = 4, the formula reduces to q

�

= p

2

.

Since the new vertices which are inserted during

the re�nement process always have valence 4, the

general formula (2) is only needed to subdivide

the edges directly emanating from a singular ver-

tex (valence 6= 4). In the regular regions which

cover most of the net, no further computation is

necessary (cf. Fig. 4).

A face-point f is computed by applying (1) to

four succeeding edge-points:

f :=

4 + w

8

(b+ c) �

w

8

(a+ d): (3)

There are two possibilities for choosing this set

of edge-points a, b, c, and d. However, rule (2)

is especially designed to make both alternatives

equivalent. Hence, it does not matter in which

direction rule (3) is applied since both lead to

the same result.

If a re�nement scheme is to be used in prac-

tical modeling or reconstruction applications, it

must provide features that allow the de�nition of

creases and cusps [Hop94]. These requirements

p

2

n−2

0k 1

1k

2

k

n−2k

n−1n−1k

q

a

bcd f

e

p

p

p

0p
0

Figure 3: Labeling the vertices in the vicinity of

the edge p

0

q

0

.

can be satis�ed if the scheme includes special

rules for the re�nement of open nets which yield

well-behaved boundary curves that interpolate

the boundary polygons of the given net. Hav-

ing such a scheme, creases can be modeled by

joining two separate subdivision surfaces along a

common boundary curve and cusps result from

a topological hole in the initial net which geo-

metrically shrinks to a single point (cf. Fig. 5).

In order to re�ne open nets, we have to de-

�ne additional rules for re�ning edges on or

near the boundary. C

0

-joins of subdivision sur-

faces whose initial nets have a common bound-

ary polygon, require that the rules for the sub-

division of boundary edges does not depend on

inner vertices. Hence, we compute new edge ver-

tices on the boundary by applying rule (3) where

in this case a, b, c and d represent four neigh-

boring boundary vertices.

In cases where three or more subdivision sur-

faces meet at a common point c, it is necessary

to allow piecewise smooth boundary curves. Let

a, b, c, and d be four neighboring boundary

vertices of one of the nets. Since c belongs to

more than three adjacent surfaces, it has to be

a breakpoint in the piecewise smooth boundary

curves. We de�ne the corresponding re�nement

rule by replacing d by d

�

:= 2 c� b in (3).

Well-de�ned rules for the subdivision of inner

edges emanating from a boundary vertex can be

obtained by linearly extrapolating the boundary

faces. This gives an additional layer of faces at

the boundaries of the net, making former bound-
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Figure 5: Modeling sharp features (piecewise smooth boundary, crease, cusp)

Figure 4: Singularities in the re�ned net.

ary vertices to inner vertices such that the above

rules for inner edges can be applied. More pre-

cisely, if q

1

; : : : ;q

n

are the inner vertices con-

nected to the boundary vertex p then we can

extrapolate by p

�

:= 2p�

1

n

P

i

q

i

.

In the case of a boundary face fp;q; r; sg where

the boundary vertex p is not connected to any

inner vertex we have to distinguish two constel-

lations. If p is a breakpoint in the piecewise

smooth boundary curve, we add the extrapo-

lated face fp;q

�

; r

�

; s

�

g with q

�

:= 2p � q,

s

�

:= 2p � s and r

�

= q

�

+ s

�

� p. If p is

no breakpoint, we add the vertex p

�

:= 2p� r.

Connecting the extrapolated vertices corre-

sponding to neighboring boundary vertices gives

the additional layer of extrapolated faces. After

the re�nement, these faces have to be deleted.

Convergence Analysis

The re�nement scheme de�ned in the last sec-

tion belongs to the class of stationary subdi-

vision schemes [Dyn91] since the same formu-

las are used on every re�nement level. In the

vicinity of any vertex, such schemes can be de-

scribed in terms of a matrix which maps vertices

from the mth level to the (m + 1)st level. In

[Rei95, Pra95] su�cient conditions on the eigen

structure of this matrix are derived which guar-

antee the convergence of the sequence of nets to

a tangent-plane continuous limiting surface.

These condition are that the leading eigen val-

ues have to be �

1

= 1 and �

2

= �

3

< 1 and

the eigen vectors corresponding to �

2

and �

3

al-

low the de�nition of a regular paramerization

with respect to which C

1

-continuity is achieved

[Rei95]. We omit the details of the straightfor-

ward veri�cation of these criteria and refer to

[Kob96].

Approximation Order

The interpolation scheme presented in this paper

is designed to generate free form surfaces. Since

we do not exploit any meta-knowlegde about

the geometry but only the information given by

the initial net, we cannot expect to exactly re-

produce basic shapes like spheres or cylinders.

However, this lack is tolerable if we can guar-

antee that denser information about the consid-

ered object, i.e., a �ner initial net with correct

vertex positions (on the surface to be approxi-

mated), signi�cantly improves the quality of the

approximation.

From [DGL87] we know that, on regular tensor

product meshes, the above presented interpola-

tion scheme reproduces the polynomials 1; x; y;

and x y. Further, if we restrict the tension pa-

rameter to w = 1, the scheme even reproduces
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all polynomials up to bi-degree 3. For irregu-

lar meshes, we have to apply the rule (2) in

its full generality. Since the scheme generates

C

1

-surfaces in the limit, we can use the special

parametrization induced by the eigen structure

of the subdivision matrix with respect to which

the re�nement scheme has at least linear preci-

sion.

Keeping in mind that the position of the new

points only depends on a �xed number of neigh-

boring vertices, it is obvious that for su�ciently

smooth surfaces, the approximation order di-

rectly follows form the polynomial precision of

the scheme. This can be seen by looking at a

local Taylor expansion of the surface. Hence, we

obtain an approximation order of O(h

2

) which

increases to O(h

4

) over regular regions of the net

if the tension parameter is set to w = 1. Here,

h denotes any uniform measure of the grid size,

e.g., average or maximal length of edges in the

initial mesh. In order to achieve the best approx-

imation, let w := 1 for the rest of this section.

Obviously, the O(h

2

)-term in the vicinity of ex-

traordinary vertices asymptotically dominates

the error functional such that in general, we only

get quadratic convergence. However, if we can

ensure that the number of singularities in the

initial net does increase signi�cantly with the

density of the input data then we achieve the

full O(h

4

) convergence. The assumption that the

number of singular vertices in a mesh P

h

approx-

imating a surface S can be bounded by a con-

stant is quite realistic since the amount of sin-

gularities somewhat reects the topological or

geometrical complexity of the shape of S which

is independent of h.

Suppose S : 
 ! IR

3

is a parametrization of

the surface and P

h

is an interpolating quadri-

lateral mesh whose average meshsize is mea-

sured by the stepwidth h (in the domain 
).

The size of the local region around singular ver-

tices where O(h

2

)-convergence occurs, is deter-

mined by topological distance on P

h

, i.e., by the

minimal number of edges connecting some ver-

tex to a singular one. Hence the corresponding

portion of the domain 
 � 
 covers an area of

k
k = O(h

2

) if the number of singular vertices

is �nite. Under these conditions the error func-

tional can be written as

E

h

(S) =

Z


n


O(h

4

) +

Z




O(h

2

)

= O(h

4

):

Several algorithms to reduce the number of sin-

gular vertices in a mesh have been proposed

[Eck95, Sch95]. The meshes one encounters in

practical applications usually have a constant or

very slowly increasing number of singularities as

the mesh-size h is reduced, e.g., 3D-scanners of-

ten measure an object along parallel pro�les or

along radial meridians and thus generate tensor-

product-type data.

Examples

We use the re�nement scheme to approximate

two test surfaces: the unit-sphere and the graph

of the function cos(

p

x

2

+ y

2

) over the domain


 = [0; 1]

2

. In the sphere case the number of sin-

gular vertices is constant, since the initial nets

are generated by using nets as depicted in Fig. 1

and projecting the vertices onto the sphere. The

graph-surface is approximated by taking equidis-

tant samples in x- and y-direction.

h

R




j"j q

1

max j"j q

1

1 3.11e-04 5.64e-04

.5 1.95e-05 15.9 3.59e-05 15.7

.25 1.22e-06 16.0 2.26e-06 15.9

.125 7.57e-08 16.1 1.41e-07 16.0

Table 1: Approximation errors for the graph of

cos(r), r

2

= x

2

+ y

2

over 
 = [0; 1]

2

, step-

width h. We show the errors with respect to the

L

1

- and the L

1

-norms. The q-columns contain

the ratio of successive errors indicating O(h

4

)-

convergence.

In order to demonstrate the di�erent rates of

convergence in the parametric case, we compute

the approximation error separately for the regu-

lar portions of the net. In the functional settings

this distinction is not necessary since the nets

have no extraordinary vertices.

Numerical Experiments

In order to evaluate the practical usefulness

of the presented scheme, we apply it to a set

of examples and compare our results to those

obtained by standard techniques based on im-

plicit representations used, e.g., in the context

of adaptive �nite element analysis by [SR91,

Bau95]. For both types of representation we
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h

R

reg

j"j q

reg

R

tot

j"j q

tot

.25 1.64e-03 5.36e-03

.125 1.22e-04 13.5 4.02e-04 13.3

.0625 8.09e-06 15.1 3.12e-05 12.9

.03125 4.88e-07 16.6 2.46e-06 12.7

Table 2: Approximation errors for the sphere.

The errors are normalized to the volume of the

sphere. The stepwidth h = 1 corresponds to a

cube as initial approximation.

compare approximations obtained by adaptive

uniform re�nement and adaptive irregular re-

�nement [Bau95]. Both schemes are also tested

in combination with mesh smoothing as sug-

gested by [Sch93, Sch95, Ric96], where the el-

ement shape is optimized after each re�nement

step by using a local smoothing technique. We

use the following abbreviations:

� unif : : : uniform re�nement, exact geometry

� adap : : : non-uniform re�nement, exact ge-

ometry

� smoo : : : with mesh smoothing

� orig : : : without mesh smoothing

� inte : : : mesh generation by the proposed

re�nement scheme

Cylindrical Shell with Hole

The cylindrical shell, originally proposed by

[Sco69] is rigidly supported at both curved

boundaries (cf. Fig. 6) and loaded by a uniformly

distributed load in vertical direction. The verti-

cal displacement v at the center of the free edges

is the quantity compared in the analysis.

Due to symmetry, only a quarter of the shell has

to be discretized in the �nite element model. The

starting meshes used in the analysis are shown in

Fig. 7. They consist of 32 elements and 45 nodes.

In order to achieve a su�ciently good approxi-

mation of the geometry, 5 nodes are chosen in

the latitudinal direction. Using an initial mesh

having 8 elements (15 nodes), it turns out that

the geometry is not well approximated and the

numerical analysis results in a displacement be-

ing 15% larger than the exact value.

The mesh given in Fig. 7b is a slight modi�ca-

tion of the mesh in Fig. 7a, which results from

Figure 6: Circular shell with hole, geometry, ma-

terial properties, and loading

mesh smoothing. As the element boundaries are

no longer aligned with the direction of the main

curvatures, this leads to a signi�cantly di�erent

initial geometry for the interpolation algorithm.

The modi�cation of the mesh leads to displace-

ments di�ering about 10% from the correct val-

ues.

In Fig. 8 the meshes for uniform and irregular

adaptive re�nement based on the interpolatory

re�nement scheme are given. Convergence dia-

grams are depicted for the displacement v in Fig.

9 and for the relative error in energy in Fig. 10.

For comparison, the curves for other re�nement

strategies which are performed on the implicit

representation of the exact geometry, are also

included.

-0.36

-0.34

-0.32

-0.3

-0.28

-0.26

10 100 1000 10000 100000
{Number of degrees of freedom}

inte, adap
inte, unif
unif, orig
unif, smoo
adap, orig
adap, smoo

Figure 9: Circular shell with hole, Convergence

of midside displacement

Discussion

If the starting mesh is reasonably �ne, the in-

terpolation algorithm leads to almost the same

results as the re�nement on the implicitly given
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Figure 7: Circular shell with hole, a) basic, b) smoothed starting mesh

Figure 8: Circular shell with hole, a) uniform, b) adaptive irregular �nal mesh
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40
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100 1000 10000
{Number of degrees of freedom}

inte, adap
inte, unif
unif, orig
unif, smoo
adap, orig
adap, smoo

Figure 10: Circular shell with hole, Convergence

of energy error

geometry for uniform re�nement. For adaptive

irregular re�nement the results can be worse if

the starting mesh is too coarse because in this

case the geometry itself is not approximated cor-

rectly. According to the observations in the last

section, the approximation order of the re�ne-

ment scheme guarantees that a higher density

of the initial mesh strongly improves the quality

of the approximation of the geometry.

A combination of the re�nement scheme with

smoothing techniques [Sch93] is not possible, as

the interpolation nodes are �xed in the current

form of the interpolation algorithm. However,

the convergence of the displacements is very

good | only the algorithms which use smooth-

ing techniques lead to better results. It turns out

that the algorithm is well suited for practical en-

gineering applications.

Composite Cylinder-Plate structure

The second example is the intersection of a cylin-

der and a plate by an angle of 45 degrees. The

width of the quadratic plate is w = 15 and the

cylinder of radius r = 6 has an average length of

l = 10. The thickness of the cylinder and of the

plate are both t = 1. The modulus of Elasticity

is E = 10

6

and the Poisson ratio � is set to zero.

The plate is simply supported. A uniformly dis-

tributed load is applied at the free edge of the

cylinder and is directed along the axis of the

cylinder.

As we explained earlier, the crease along the in-

tersection curve can be modeled by joining two

separate parts, the cylinder and the the plate,

having a common boundary polygon. Hence,

common nodes have to be stored twice since oth-

erwise the interpolatory re�nement would gen-

erate a smooth join.
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Figure 11: Composite structure (common

boundary indicated), starting mesh

The initial and the �nal meshes of the adaptive

analysis are shown in Fig. 11 and 12. For an ex-

act interpolation of the plate it is su�cient to

de�ne 4 corner vertices (linear precision). The

cylinder is de�ned by the boundary polygons at

the free edge and at the intersection. Using 8

nodes along these boundaries guarantees a suf-

�ciently accurate reproduction.

Discussion

The convergence diagram for the energy error

in Fig. 13 shows a slightly reduced convergence

for the interpolation algorithm in combination

with uniform re�nement compared to the re-

sults obtained by using the other algorithms.

With adaptive irregular re�nement the results

obtained with our scheme are almost identical

to all other results.

Conclusion

The presented scheme to generate adaptively

re�ned quadrilateral meshes allows to approxi-

mate arbitrary surfaces with holes and sharp lo-

cal features. The quality of the approximation is

su�ciently well, even if the scheme is applied to

moderately detailed initial meshes. Due to the

symmetry of the re�nement rules for the edges

around a vertex, the local distortion is reduced,

i.e., if n edges meet at a common vertex, the

angles between them tend to

2 �

n

. This regular-

ization e�ect causes the shapes of adjacent faces

to become alike.

The slightly less accurate results obtained by us-

ing the interpolatory re�nement scheme instead

of an exact representation of the given objects

(cf. last Section) stems from the fact that the

subdivision scheme computes new vertices with-

out any meta-knowledge about the shape (in

this case that the surfaces are cylindrical). How-

ever, the scheme is mainly designed for com-

putations on free form surfaces of which only

discrete points are given and an exact represen-

tation is not known. Therefore also other ap-

proaches based on splines would have to guess

the actual shape.

The power of the scheme is demonstrated best

by applying it to a more sophisticated model.

The surface in Fig. 14 is generated by using the

coarse approximation as input data and re�ning

twice. No additional information is necessary.

Constructing a piecewise smooth spline surface

interpolating this irregular net would be rather

complicated.

The major advantage of this scheme compared

to other approaches therefore is its striking sim-

plicity. Only local a�ne combinations of points

have to be computed in order to re�ne a given

net. Almost no special cases concerning the lo-

cal topology of the mesh have to be considered.

The examples have been generated by our im-

plementation which provides all the presented

features including adaptive irregular re�nement

with C

0

-consistency preservation. (please con-

tact: kobbelt@cs.wisc.edu)
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