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Multiresolution shape editing performs global deformations while preserving fine surface details by modifying a
smooth base surface and reconstructing the modified detailed surface as a normal displacement from it. Since two
non-trivial operators (deformation and reconstruction) are involved, the computational complexity can become
too high for real-time deformations of complex models. We present an efficient technique for evaluating multires-
olution deformations of high-resolution triangle meshes directly on the GPU. By precomputing the deformation
functions as well as their gradient information we can map both the deformation and the reconstruction operator
to the GPU, which enables us to reconstruct the deformed positions and sufficiently close approximations of the
normal vectors in the vertex shader in a single rendering pass. This allows us to render dynamically deform-
ing 3D models several times faster than on the CPU. We demonstrate the application of our technique to two
modern multiresolution approaches: one based on (irregular) displaced subdivision surfaces and the other one on
volumetric space deformation using radial basis functions.

Categories and Subject Descriptors: I.3.5 [Computational Geometry and Object Modeling]:
Modeling packages

Additional Key Words and Phrases: Multiresolution mesh modeling, GPU processing

1. INTRODUCTION

Interactive mesh editing has become an essential com-
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Fig. 1. A general multiresolution editing pipeline.

ponent of most modern CAD systems. The concep-
tual simplicity and algorithmic efficiency of processing
triangle meshes has established their effective applica-
tion in various geometry processing areas, ranging from
early product development phases, such as rapid proto-
typing, to character animation and rendering in movies
and 3D games.

Among the variety of existing shape deformation ap-
proaches, multiresolution modeling appears to be one of
the most powerful paradigms: Decomposing the geome-
try into a low frequency base surface and high frequency
detail coefficients allows for global deformations with
natural fine-scale detail preservation. This enables edit-
ing of a fully detailed mesh by manipulating the control
handles available on the base surface (Fig. 1).

Especially in the context of engineering applications,
meshes have to represent sufficiently accurate approxi-
mations of the true surface. As a consequence, models often consisting of millions of triangles have to be processed.
Rendering (static) models of this complexity can be done very efficiently using modern graphics processors (GPUs),
which have doubled their performance several times during the last few years. In contrast, CPUs improve their speed
at much slower rate, limited not only by their general purpose design, but also by the legacy of the numerous existing
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software systems, which impose hard compatibility constraints on today’s processor development. As a consequence,
dynamic modeling of complex meshes is still a rather slow process, as the deformed geometry is typically computed
on the main processor (CPU) and uploaded thereafter to the GPU for rendering.

Given all of these factors, a natural step for improving the performance of the existing mesh modeling frameworks
is outsourcing as much as possible of the deformation’s computation to the high-performance GPU and exploiting its
specialized, highly parallel design. Hence, in this paper we present algorithms for computing both the deformation
and the detail reconstruction emerging in a typical two-scale mesh modeling framework on the GPU. To make this
possible, we show how to precompute special deformation basis functions, which can then be evaluated on the GPU to
efficiently yield the deformed base surface S′ (Fig. 1). Moreover, for surface shading, we need to compute the normal
field of the deformed fine-scale mesh M ′. However, the lack of mesh neighborhood information in a GPU program
prevents a simple recomputation of vertex normals by local averaging. Therefore, we solve this problem by deriving
an efficient approximate normal reconstruction technique which allows the reconstruction and the rendering of M ′

completely on the GPU.
2. CONTRIBUTIONS

In this paper we examine the components of a typical two-scale modeling framework and present specific algorithms
for implementing them on the vertex shader of the GPU in a single rendering pass. Since the lack of mesh neighbor-
hood information in a GPU vertex program prevents a simple recomputation of vertex normals by local averaging,
the major challenge is to derive a technique for computing the deformed normals using terms associated solely with
the currently processed vertex [d’Eon 2004]. The problem is additionally complicated by the fact that in a two-scale
multiresolution framework we are rendering a deforming (fine-scale) geometry which depends in a non-linear fashion
on the zero and first order terms evaluated on the deforming base surface (Fig. 1).

Therefore, our main contribution is a simple and efficient new method for approximating the normal field of the
deformed fine scale mesh M ′ using a (relatively) small amount of attributes attached to the currently processed vertex
pi ∈ M ′ (Section 4). This technique allows us to completely outsource the reconstruction and rendering of M ′ during
multiresolution deformations to the GPU. For instance, we enhance the efficient mesh modeling framework proposed
in [Botsch and Kobbelt 2005] by multiresolution editing. As another application, we present the necessary algorithms
to map the complete reconstruction of generalized displaced subdivision surfaces proposed in [Marinov and Kobbelt
2005] onto the GPU.

Although we discuss our rendering technique in the context of the multiresolution modeling frameworks presented in
[Botsch and Kobbelt 2005; Marinov and Kobbelt 2005], its application is not limited to these specific cases. In general
it can be applied to any two-band multiresolution editing approach which can compute the deformed base surface and
its tangents on the GPU. An additional advantage of our technique is that it is practically independent from the CPU
performance, which ensures its rapid scalability in the future, since GPU performance improves at much higher rate.
Moreover, sophisticated applications can take advantage of the idle CPU to run additional calculations in parallel,
since the editing and the rendering processes are completely computed on the GPU.

3. MULTIRESOLUTION MODELING

Existing multiresolution modeling approaches can be classified by the way they represent and deform the base surface,
as well as by the encoding of the high frequency details. Modeling systems based on subdivision surfaces can naturally
exploit their hierarchical structure for the multiresolution representation and the surface deformation [Zorin et al.
1997; Litke et al. 2001]. In contrast, variational concepts are used for constructing the multiresolution hierarchy
in the general case of irregular triangulations, and smooth deformations are derived from an energy minimization
principle [Kobbelt et al. 1998; Kobbelt et al. 1999; Guskov et al. 1999; Botsch and Kobbelt 2004; 2005].

The geometric difference between any two subsequent hierarchy levels — or between the base surface and the fine-
scale mesh if only two levels are used (Fig. 1) — are encoded as displacements vectors associated with the mesh
vertices, which are stored in local-frame coordinates. In general, these displacements have both tangential and normal
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components [Zorin et al. 1997; Guskov et al. 1999; Litke et al. 2001], which, however, might lead to reconstruction
artifacts. Removing the tangential components and thus restricting to normal displacements avoids these problems,
but corresponds to a resampling of either the fine-scale surface [Lee et al. 2000; Guskov et al. 2000] or the base
surface [Kobbelt et al. 1998; Kobbelt et al. 1999]. As the base surface is known to be smooth, and hence a resampling
will not introduce aliasing, the latter approach is generally preferred.

Some recent approaches to multiresolution modeling of arbitrary meshes do not require an explicit frequency de-
composition, but instead represent the surface details in terms of so-called Laplacian or differential coordinates [Yu
et al. 2004; Sorkine et al. 2004; Lipman et al. 2004]. The editing operator then modifies these differential coordi-
nates either explicitly [Yu et al. 2004] or implicitly [Sorkine et al. 2004] and reconstructs the fine-scale surface by
solving a linear Laplacian system. Very recently, rotation invariant coordinates for mesh deformations were proposed
in [Lipman et al. 2005] and a volume-aware extension of the Laplacian coordinates modeling approach was proposed
in [Zhou et al. 2005].

3.1 Two-scale multiresolution modeling framework concepts

We will now give an overview of a typical two-scale multiresolution modeling framework by describing it in terms of
the three involved operators, i.e., decomposition, editing, and reconstruction (Fig. 1). Our goal is to map as much as
possible of these operators to the GPU in order to exploit its superior stream processing performance. One apparent
consequence of the GPU approach is that each vertex has to be processed individually, which complicates the normal
vector computation due to the lack of mesh neighborhood information.
Decomposition: In order to be able to process irregular fine-scale input meshes without resampling, the input mesh
M is decomposed into a smooth base surface S (low frequencies) and normal displacements NS (high frequencies).
The position of each fine-scale vertex pi ∈ M is defined as:

pi = S(ti) + di ·NS(ti) , NS =

(
∂S
∂u × ∂S

∂v

)∥∥∂S
∂u × ∂S

∂v

∥∥ , (1)

where ti is the parameter value corresponding to the exact foot-point S(ti) of pi on S, and

di = 〈pi − S(ti), NS(ti)〉 .

To allow for surfaces of arbitrary topology and to reduce the number of special cases, we assume that the parameter
domain of S is composed by a set K of patches ki. More precisely ti = [ki, (ui, vi)], where ki ∈ K and (ui, vi)
are local parameters inside ki. This definition is sufficiently general and allows us to use the same notation for both
presented modeling frameworks: In case we are using base subdivision surfaces (Section 5), the patches K are the
faces of the control mesh at some sufficiently refined level. In case we are using a smooth mesh as a base surface
(Section 6), every triangle on the base mesh corresponds to a separate patch.
Editing: To edit M the user simply deforms the base surface S by manipulating the controls provided by the modeling
framework (Fig. 1). The choice of controls and the semantics of their manipulation are application specific. Computing
the deformed base surface S′ and its normal field NS′ (or its tangent fields ∂S′

∂u and ∂S′

∂v ) depends on the representation
of both the deformation and the base surface (see Section 5 and Section 6).
Reconstruction: The reconstruction operator computes the deformed fine-scale mesh M ′ by evaluating the normal
displacement (1) for every vertex pi ∈ M . However, reconstructing the normals of M ′ on the GPU is not trivial as we
describe in detail in the next section.

4. NORMAL FIELD RECONSTRUCTION

In order to render the deformed mesh M ′, we not only have to reconstruct its vertex positions as a normal displacement
from S′ according to (1), but we also have to derive its new normal field NM ′ . When computing deformation and
reconstruction on the GPU, we need to compute the normals only using the information associated with the currently
processed vertex pi ∈ M ′.
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Fig. 2. From left to right: (a) The fan model is deformed by pulling the four red control points. (b) Shading using the exact normals. (c) Shading
using the approximate normals. (d) Color plot of the approximate normals deviation (maximum deviation is 23 degrees, mean deviation computed
only for the modified fine scale vertices is 1 degree).

Consider the normal displacements di as samples of a (piecewise) smooth scalar-valued function D defined over
the smooth base surface S. Hence the input mesh M can be seen as a piecewise linear approximation of a parametric
surface F defined by generalizing (1) over the parameter domain of S:

F (t) = S(t) + D(t) ·NS(t) . (2)

To handle sharp features we assume that for a vertex pi lying on a sharp feature the position and the normal are
duplicated as many times as different smooth sectors are adjacent to it. With this assumption, both the theoretical
discussion and the practical implementation of the normal reconstruction do not need a special case distinction for
sharp feature vertices. Also when discussing the behavior of F at given ti it is more convenient to restrict the parameter
domain to the corresponding patch ki and write S, D and F simply as functions of two parameters (u, v) spanning the
domain of ki. The partial derivatives of F and its normal NF are then:

∂F

∂u
=

∂S

∂u
+ D · ∂NS

∂u
+

∂D

∂u
·NS , (3)

∂F

∂v
=

∂S

∂v
+ D · ∂NS

∂v
+

∂D

∂v
·NS , (4)

NF =
(

∂F

∂u
× ∂F

∂v

)
/

∥∥∥∥∂F

∂u
× ∂F

∂v

∥∥∥∥ . (5)

Since D does not change during deformation and we can compute a priory the normal NF at pi on the original
(undeformed) mesh M using the adjacent triangles normals we can estimate the gradient ∇D(ti) by solving the
systems (3) and (4) and exploiting the fact that NF ⊥ ∂F

∂u , ∂F
∂v . This will allow us to reconstruct the deformed normal

NF ′ field exactly, if we are able to evaluate the second partial derivatives ∂2S′

∂u2 , ∂2S′

∂uv , ∂2S′

∂v2 needed for computing ∂N ′
S

∂u

and ∂N ′
S

∂v . Although this is possible in case S is a C2 surface, computing the exact solution is not practically feasible
mostly because it increases the amount of necessary calculations and precomputed terms (see Section 5.2.1) per fine
scale vertex, effectively doubling the memory requirements and the computation time.

4.1 Approximate reconstruction

Ideally, for a given ti, we would like to be able to reconstruct NF using only S, ∂S
∂u and ∂S

∂v since these are the terms
which are required to compute (1). The terms which require second order derivatives in (3), (4) are the derivatives
of the normal NS . However, it is known that the first order derivatives of NS lie in the tangent plane of S. As a
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consequence they can be represented as

∂NS

∂u
= λu

∂S

∂u
+ µu

∂S

∂v
,

∂NS

∂v
= λv

∂S

∂u
+ µv

∂S

∂v
.

Substituting these expressions in (3), (4) we get

∂F

∂u
= (1 + λuD)

∂S

∂u
+ µuD · ∂S

∂v
+

∂D

∂u
·NS ,

∂F

∂v
= λvD · ∂S

∂u
+ (1 + µvD)

∂S

∂v
+

∂D

∂v
·NS ,

i.e., we can naturally represent ∂F
∂u and ∂F

∂v in the form

∂F

∂u
= αu

∂S

∂u
+ βu

∂S

∂v
+ γuNS , (6)

∂F

∂v
= αv

∂S

∂u
+ βv

∂S

∂v
+ γvNS . (7)

Since F does not have a natural parameterization, the coefficients of the linear combination (6), (7) are determined
by taking two arbitrary orthonormal tangent vectors T0 and T1 in the tangent plane defined by the undeformed input
normal NF (computed by averaging) and solve the two resulting 3× 3 linear systems ∂F

∂u = T0 and ∂F
∂v = T1.

After deriving these coefficients from the original undeformed state, we can use them during editing in order to
reconstruct the deformed normals NF ′ from the deformed base surface S′ and its partial derivatives by applying
equations (6), (7). Note also that although the partial derivatives ∂S′

∂u and ∂S′

∂v in general will be scaled anisotropically
by the editing operator, the normal vector NS′ is computed as their normalized cross product. However, while γu, γv

encode the displacement function’s gradient
(

∂D
∂u , ∂D

∂v

)
, which does not change during a deformation, the coefficients

αu, αv and βu, βv are actually functions of the curvature along the tangent directions ∂S
∂u and ∂S

∂v . During deformation,
we do not consider the second derivatives of S′ in (6), (7), therefore our approximate normal reconstruction in fact
neglects the change of curvature of the base surface. However, our experiments show that the loss of accuracy in the
reconstructed normal field does not degrade the quality of the shading noticeably since the deviation from the exact
normals is small under reasonable deformations (Fig. 2, supplied video). Even for the extreme deformations shown in
the video the average approximation error for the reconstructed normals is never above 5 degrees.

Under very extreme deformations the approximate reconstruction might fail to give results sufficiently close to the
true normals if the base surface S is too far away from the fine scale mesh M . The reason for this is that if the displace-
ments di are very large, the error emerging from ignoring the second order terms of S is amplified considerably. One
way to resolve this issue is to fit the base surface S to M using a technique similar to the one proposed in [Marinov
and Kobbelt 2004], which minimizes the lengths of the displacements di.

Note also that our approximate normal reconstruction is only required for the purpose of implementing the real-time
rendering of the deformed mesh on the GPU. For applications which require precise mesh normals, e.g., simulation,
the exact normals can be recomputed in a offline pass after the editing of the surface shape is finalized.

5. SUBDIVISION SURFACE BASED MESH MODELING

In this section we specialize the abstract framework defined in Section 3.1 in order to implement the two-scale mul-
tiresolution modeling algorithm presented in [Marinov and Kobbelt 2005] on the GPU. Similarly to [Lee et al. 2000],
this method decomposes the fine scale mesh M into a (Catmull-Clark [Catmull and Clark 1978] or Loop [Loop 1987])
subdivision base surface S and a set of normal displacements (Fig. 3). However, instead of resampling M , the ap-
proach presented in [Marinov and Kobbelt 2005] resamples the base surface S by defining an irregular, non-dyadic
parameterization of the vertices of M . Hence, resampling artifacts are avoided, but the reconstruction procedure must
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Fig. 3. A car model (left) is represented as normal displacement with respect to a smooth Catmull-Clark surface (middle). Manipulating the vertices
of its control mesh, a large scale deformation is performed on the mesh (right).

be able to evaluate S at arbitrary (non-dyadic) parameter values. To implement this evaluation efficiently on the GPU,
we adapt the idea proposed in [Bolz and Schröder 2002] by precomputing the basis functions of the subdivision surface
at the (irregular) parameterization of the modeled mesh vertices.

GPU processing for mesh deformations was an unexplored field until the advance of the programmable graphics
hardware in the last few years. Smooth geometry images [Losasso et al. 2003] represent regular genus zero meshes
as textures, which can be fully implemented on the fragment shader of the GPU, and thereby allow for very efficient
and simple rendering and animation at different levels of detail. Bolz et al. implemented their subdivision surfaces
rendering technique [Bolz and Schröder 2002] on the GPU [Bolz and Schröder 2004] using a two pass “render to
vertex array” approach. They precompute subdivision basis functions (up to a predefined maximum valence) at all
dyadic parameter values (up to a certain refinement level), which allows them to refine uniformly or adaptively the
control mesh of a Catmull-Clark surface on the GPU. More advanced methods for tessellating subdivision surfaces on
the GPU were proposed recently in [Bunnell 2005; Shiue et al. 2005].

5.1 Basis function precomputation

Given a multiresolution model where the geometry of

Fig. 4. Catmull-Clark surfaces basis functions’ support:
only the basis functions associated with the control vertices
(red dots) incident to a face adjacent to the marked patch do
not vanish for any parameter value ti in the center face.

a mesh M is represented with respect to a subdivision
surface S in the form (1), reconstructing the position of
a vertex pi is straightforward since we only need to eval-
uate S and its normal NS at the corresponding parame-
ter value ti using [Stam 1998; 1999]. At a closer look,
S can be represented as a linear combination of com-
pactly supported scalar-valued basis functions φj asso-
ciated with the vertices cj of its control mesh C0. Hence
S(ti) and its derivatives can be written as

S(ti) =
N∑

j=0

φj(ti)cj , (8)

∂S

∂u
(ti) =

N∑
j=0

∂φj

∂u
(ti)cj , (9)

∂S

∂v
(ti) =

N∑
j=0

∂φj

∂v
(ti)cj . (10)

Exploiting this representation and the fact that the parameterization ti is fixed during a modeling session, we can
precompute φj(ti), j = 0..N and their partial derivatives for every ti and cache the resulting values. Moreover, since
φj are compactly supported, only the basis functions’ values in the neighborhood of the patch fi where ti resides have
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to be stored (Fig. 4). The number of non-vanishing φj for a given ti is determined by the local connectivity structure
of C0 at fi and is 16 for a fully regular C0. Therefore to reconstruct pi in terms of the linear combinations (8), (9),
(10) we need to precompute on average 16× 3 = 48 scalars.

The main difficulty with this approach comes from the fact that unlike B-splines, which possess very simple poly-
nomial definition, the subdivision basis functions φj depend on various factors: The valence of the control vertex cj ,
the valences of its direct neighbors in C0, the valences of all adjacent faces in C0 (for Catmull-Clark [Catmull and
Clark 1978] surfaces) and the presence of adjacent boundary and crease edges.

Therefore, in practice, we evaluate the basis function φj by assigning an additional scalar attribute σ0 to the vertices
of the control mesh C0 and set σ0(cj) = 1 and σ0(ci) = 0, j 6= i [Bolz and Schröder 2002]. Refining C0 k
times, where k is the number of subdivisions required by Stam’s procedure (k = 1 for Loop and k = 2 for Catmull-
Clark surfaces), we apply the corresponding subdivision rules (exclusively) on the scalar values σ0. The resulting
scalar field σk defines the subdivision basis function φj for which positions and partial derivatives can be easily
evaluated at arbitrary ti using [Stam 1998; 1999]. Once all of these coefficients are precomputed, S(ti) and NS(ti)
can be evaluated efficiently by (8) without accessing the control mesh whenever the control vertices cj are modified.
This allows the (CPU-based) reconstruction of the deformed mesh M at interactive frame-rates for most meshes with
moderate complexity. Moreover, we can now take advantage of the simplicity of the formulas (1) and (8) to implement
the reconstruction of M on the GPU (Section 5.2), allowing interactive multiresolution modeling of high-resolution
dense meshes.
5.2 GPU implementation details

5.2.1 Rendering path. There are several ways to implement the deformation of the mesh M on the GPU. We
achieved best performance results when transferring the data required for the computations attached as vertex at-
tributes. More precisely, we supply for every pi regardless of the type of the actual deformation the coefficients
needed to reconstruct it and its normal vector based on (1), (6), (7) : di, αu, αv , βu, βv , γu, γv (2 attributes/7 floats).
Once the set of modified control vertices Q is selected, we precompute the fraction of (8) for S(ti), ∂S

∂u (ti) and ∂S
∂v (ti)

which is independent of Q (and hence stays constant) and store it in 3 additional attributes (9 floats). Now per every
control vertex cj ∈ Q we define an additional attribute which stores φj(ti),

∂φj

∂u (ti) and ∂φj

∂v (ti) (3 floats). This results
in a total of 16 + 3 |Q| floats attached per vertex. All of the precomputed data can be uploaded to the video memory
using vertex buffer objects since it does not change as long as the set Q remains unchanged (not their positions). Since∑N

j=0 φj(ti) = 1 and 0 ≤ φj ,
∣∣∣∂φj

∂u

∣∣∣ ,
∣∣∣∂φj

∂v

∣∣∣ ≤ 1, the 3 |Q| floats representing the basis functions terms can be safely
quantized to 16 or 24 bits precision (for GPUs which support it) to reduce the amount of necessary video memory.
Finally, the only data we need to transfer to the GPU at every frame are the current positions of the control vertices
cj ∈ Q, i.e., 3 |Q| floats per frame, which we upload using global shader variables (uniforms) before rendering the
mesh triangles.

5.2.2 Affine transformations of control vertices. There are two issues with the (rather rigid) approach described
above: First, we need to submit for every vertex pi ∈ M the coefficient φj(ti) in the linear combination (8) for every
modified control vertex cj , even if pi actually does not depend on cj (since φj(ti) = 0), i.e., there is an additional
memory overhead. Second, since the number of vertex attributes is limited (16 for our test system), it imposes a
restriction for the maximum number of simultaneously modified control vertices (11 or 15 if the fourth component of
attributes associated with cj is used to transfer an additional scalar value).

However, that restriction is not an issue if the position of the simultaneously modified control vertices is defined by
a single affine transform. Adapting the framework of [Botsch and Kobbelt 2004], we represent Q = {c0.. ck} as affine
combination of four points {q0.. q3} forming an affine frame in R3, i.e., cj = Σ3

l=0ξlql. This implies

S(ti) =
k∑

j=0

φj(ti)cj =
k∑

j=0

φj(ti)

 3∑
j=0

ξj,lql

 =
3∑

l=0

 k∑
j=0

ξj,lφj(ti)

 ql ,
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Table I. Subdivision surface based multiresolution mesh modeling benchmark — CPU vs. GPU performance chart. The number of simultaneously
edited control vertices affects the computational complexity of the deformation since the amount of required data (attributes) per input mesh vertex
depends linearly on it. The performance during an affine transformation of a larger number of control vertices (Section 5.2.2) corresponds to the
case of four simultaneously modified control vertices. Models complexity (triangles): Car - 62K; Fan - 137K; Male head - 667K.

i.e., we can represent all foot-points S(ti) (and the corresponding derivatives ∂S
∂u (ti) and ∂S

∂v (ti)) as a linear combina-
tion of {q0.. q3}. Hence, it is sufficient to provide per vertex only the precomputed (fixed) fraction of S(ti), ∂S

∂u (ti)
and ∂S

∂v (ti) and the 3× 4 coefficients required for computing the dynamic fraction as linear combination of {q0.. q3}.
Therefore for such a deformation we need only 8 attributes (28 floats): 2 attributes (7 floats) for di, αu, αv , βu, βv ,
γu, γv; 3 attributes (9 floats) for the fixed fraction of S(ti), ∂S

∂u (ti) and ∂S
∂v (ti); 3 attributes (12 floats) for the dynamic

fraction. Notice that the precomputed basis functions with respect to an affine frame {q0.. q3} do not cause overhead
in the surface evaluation.

5.2.3 GPU program. All of the code for reconstructing the geometry and the normals of M ′ on the GPU is contained
in a single vertex shader program. The program is generated on the fly once the set Q is defined in order to avoid
costly case distinctions in the vertex shader. We implemented the computation in both GLSLang (OpenGL 2.0) and
in assembler (ARB_vertex_program). The GLSLang implementation performed constantly slower than our assembler
program in all tests by a strongly varying factor reaching at times 90%, which can be explained with the lack of mature
support for GLSLang in the current drivers’ generation.

5.2.4 Mesh optimization. Since we render the mesh in a single pass, every pi is reconstructed k times where k is
the number of triangles adjacent to it. For most high-resolution meshes the average is k ' 6. However, in practice
the vertex geometry is never computed so many times, since modern GPUs store the results of the most recent com-
putations in a FIFO cache. Hence it is of crucial importance to reorder the indices of the mesh triangles in order to
minimize the amount of cache misses [Hoppe 1999]. Since the computation requires a large number of video memory
accesses, using an interleaved attribute layout and a sequential reordering of the vertex data in order to minimize the
memory access latency turned out to be quite important as well. These optimizations accounted for more than 50% of
the performance gain for some models.
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5.3 Results

We tested our subdivision surface based multiresolution modeling algorithm on a 3.0GHz Pentium4 system with AGP
8x GeForce 6800 Ultra graphics card. The GPU implementation of the deformation and the reconstruction results in
significant performance gains compared to an implementation of the computation of (1) on the CPU, using exactly
the same algorithmic components, i.e., precomputed basis functions (8) and approximate normal computation (6), (7)
(Table I). For example, our demo simultaneously deforms 10 control points on the Male model (667K triangles) at
55.6 fps using GPU reconstruction as compared to 9.7 fps on the CPU (see the supplied video). The source code of the
our implementation used to benchmark the performance and test models are available at our web site [Marinov and
Botsch 2005].

5.4 Limitations

Beside mesh editing, subdivision based key-frame animation is one of the most promising applications of our al-
gorithm. Unfortunately, the high performance “vertex attributes” rendering path on the GPU does not allow more
complex deformations, since we are not able to access the full range of precomputed basis functions information for
every pi on the GPU. Hence, we also implemented our technique using the brand new “vertex textures” GPU feature,
which allows uploading our (rather) sparse precomputed coefficients structure without restrictions (and memory over-
head) on the GPU. However, this hardware feature has not fully matured yet, therefore this rendering path actually
turns out to be much slower than the CPU reconstruction. If the next generation of mainstream GPU hardware pro-
vides either much faster vertex textures access or more (about 32 instead of just 16) vertex attributes, we will be able
to perform full featured key-frame animation of multiresolution models on the GPU without any (significant) CPU
intervention.

6. MULTIRESOLUTION SPACE DEFORMATION

The second GPU-accelerated shape editing technique we integrated into the multiresolution framework described in
Sections 3.1 and 4 is a space deformation approach. In contrast to the surface-based editing method of Section 5 —
where all deformations are computed explicitly on the base surface S — we now construct a function r : R3 → R3

which deforms the whole 3D space and thereby implicitly deforms the embedded base surface S. The large conceptual
difference between the two example applications proves the general applicability of our GPU-based multiresolution
framework.

6.1 Overview

In a typical modeling session the user prescribes a set of displacement constraints hi 7→ h′i (1 ≤ i ≤ m) for arbitrary
handle points hi ∈ R3. Then a space deformation function r(·) is constructed to smoothly interpolate these constraints,
i.e., r(hi) = h′i. This function is finally used to transform all surface points pi ∈ S and their associated tangent vectors
ti or normal vectors ni:

pi 7→ r(pi)
ti 7→ Jr(pi)ti
ni 7→ Jr(pi)−Tni ,

where Jr(pi) ∈ R3×3 denotes the Jacobian of r(·) at position pi (Fig. 5).
Although our GPU-based multiresolution framework can be used in combination with any space deformation tech-

nique that can be implemented on the GPU [Sederberg and Parry 1986; Hsu et al. 1992], we focus on the approach
of [Botsch and Kobbelt 2005], which represents the deformation function r(·) by triharmonic radial basis functions
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Fig. 5. Multiresolution space deformation - from left to right: (a) The user paints a deformable region (blue) and two handle regions (green) on the
bust model. During editing, each selected handle region undergoes an affine transformation, while the deformable area smoothly interpolates the
new positions of the handle region with the rest of the surface, which is left unaffected. (b) A smoothed version of the painted mesh area is used as
a base surface to control the deformation. The original positions of the painted vertices are represented as normal displacements with respect to the
base surface. (c) The base surface is edited by transforming the red manipulator attached to one of the handles. (d) The deformed mesh M ′ is then
reconstructed by adding the normal displacements over the deformed base surface. Notice, that the base surface (b,c) is not shown to the user.

(RBFs) as

r(x) =
m∑

j=1

wj ϕ (‖cj − x‖) .

Here, ϕ(t) = t3 is the underlying scalar profile function, and cj ∈ R3 and wj ∈ R3 represent the center and weight of
the jth basis function ϕ (‖cj − x‖).

In order to interpolate the user’s constraints hi 7→ h′i by an RBF deformation function the centers cj are chosen to
coincide with the constraints hi and a linear system is solved for the weights wj (see [Botsch and Kobbelt 2005] for
details). If the handle points hi are deformed by a single affine transformation only, deformation basis functions can
be precomputed just like in Section 5.2.2. Evaluating these basis functions in a vertex shader then allows for real-time
deformations of highly complex 3D models.

However, as this approach is a free-form deformation of the embedding, there is no mechanism to preserve small
surface details under large deformations (Fig. 6, left). Integrating this method into a multiresolution framework, i.e.,
applying the RBF space deformation to the base surface S instead of to the fine-scale surface M , results in a much
better detail preservation (Fig. 6, right).

As the RBF space deformation enables the computation of S′, ∂S′

∂u and ∂S′

∂v on the GPU, it can easily be integrated
into the GPU-based multiresolution modeling framework described in Section 3.1. This results in a fully GPU-based
multiresolution space deformation technique, which runs at almost the same speed as the free-form deformation of
[Botsch and Kobbelt 2005], as we will show below.

6.2 Implementation

The implementation basically follows Section 5 and differs only in the way the deformed base surface and its tangents
are computed. For each vertex pi we transfer the following data to the vertex shader (as vertex attributes):

—Original base point S(ti) and its tangents ∂S
∂u (ti) and ∂S

∂v (ti) (9 floats).

—Basis functions for volumetric deformation applied to S and its partial derivatives (12 floats).

—The coefficients di, αu, αv , βu, βv , γu, γv for the reconstruction (7 floats).
ACM Journal of Graphics Tools, Vol. V, No. N, Month 20YY.
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Fig. 6. The original free-form space deformation approach of Botsch and Kobbelt does not preserve fine surface details under large deformations
(left). Integrating this technique into our GPU-based two-scale multiresolution framework yields much better results at almost the same speed
(right). Even for this extreme deformation the average error of our approximate normal reconstruction is only 5 degrees.

Model #Vertices #Active #Triangles MR–CPU MR–GPU FFD–GPU

Male head 332K 270K 664K 3.6 71.6 77.8
Chinese statue 1M 665K 2M 4.5 69.4 76.4

Bust 984K 880K 1.97M 3.6 80.0 87.6

Table II. Performance (million triangles/second) for computing and rendering different shape deformations on several models, whose total number
of vertices/triangles and number of active vertices are given. The GPU-accelerated RBF multiresolution deformation (MR–GPU) outperforms the
CPU implementation (MR–CPU) by a factor between 15 and 20. Note that the performance of the CPU implementation depends on the percentage
of active vertices (only the active vertices are computed every frame). Hence, if a more global deformation is used, the performance of the CPU
implementation will drop down, while the performance of the GPU implementation will remain constant, since our vertex shader processes equally
all vertices. Compared to the GPU-based RBF free-form deformation (FFD–GPU), the overhead of computing the multiresolution reconstruction
results in a small (≈ 10%) performance loss only.

A simple vertex shader first evaluates the deformation basis functions in order to compute the deformed terms S′,
∂S′

∂u and ∂S′

∂v and NS′(ti). It then computes position and (approximate) normal vector of the displaced point p′i by
evaluating equations (1), (6), (7), and (5).

We improve the performance by applying the mesh optimization technique of Section 5.2.4 in order to optimally
exploit the post-T&L cache of the GPU. We further reduce transfer costs by representing everything but the absolute
position S(ti) and the displacement di using 16 or 24 bits only, which can safely be done as the absolute values are
bounded by 1.

6.3 Results

The resulting GPU-accelerated multiresolution editing technique leads to much better results for large scale deforma-
tions compared to the pure free-form deformation (Fig. 6). Moreover, since the (approximate) reconstruction operator
adds only a small overhead to the shader computations, multiresolution deformations can be performed at almost the
same speed as free-form deformations. Compared to an analogous CPU implementation, the GPU-based version is
faster by a factor of up to 20. The per-frame timings for these approaches, measured on a 3.0GHz Pentium4 with
GeForce 6800 Ultra, can be found in Table II.
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