
Pseudo-Immersive Real-Time Display of

3D Scenes on Mobile Devices

Ming Li, Arne Schmitz, Leif Kobbelt

Computer Graphics Group

RWTH Aachen University

Aachen, Germany

http://www.graphics.rwth-aachen.de

Abstract—The display of complex 3D scenes in real-time
on mobile devices is difficult due to the insufficient data
throughput and a relatively weak graphics performance. Hence,
we propose a client-server system, where the processing of
the complex scene is performed on a server and the resulting
data is streamed to the mobile device. In order to cope with
low transmission bitrates, the server sends new data only
with a framerate of about 2 Hz. However, instead of sending
plain framebuffers, the server decomposes the scene geometry
represented by the current view’s depth profile into a small
set of textured polygons. This processing does not require
the knowledge of objects or structures in the scene, i.e. the
output of Time-of-flight cameras can be handled as well. The
2.5D representation of the current frame allows the mobile
device to render plausibly distorted views of the scene at high
frame rates as long as the viewing position does not change
too much before the next frame arrives from the server. In
order to further augment the visual experience, we use the
mobile device’s built-in camera or gyroscope to detect the
spatial relation between the user’s face and the device, so that
the camera view can be adapted accordingly. This produces a
pseudo-immersive visual effect. Besides designing the overall
system with a render-server, 3D display client, and real-time
face/pose detection, our main technical contribution is a highly
efficient algorithm that decomposes a frame buffer with per-
pixel depth and normal information into a small set of planar
regions which can be textured with the current frame. This
representation is simple enough for realtime display on today’s
mobile devices.

Keywords-mobile graphics; 3D rendering; client-server ar-
chitecture; 3D scene simplification; vectorization

I. INTRODUCTION

Current off-the-shelf mobile devices are equipped with

powerful processors, graphic processing units, multiple sen-

sors, and high speed wireless connections. It has already

been a common feature for these devices to render 3D

geometry. However, at the same time, the advances in 3D

games, navigation, mobile GIS, and other applications raise

great demands and expectations for real-time 3D display on

mobile platforms. The typical data sets in these applications

often exceed the available memory size and rendering capa-

bilities even of state-of-the-art high-end handheld devices.

Therefore it is still a challenging task to display a complex,

textured 3D scene smoothly on such devices.

Various algorithms have been proposed to bridge the gap

between hardware limitation and complexity of geometry

data. One of them is progressive meshes. Progressive models

can be constructed by mesh decimation, which generates

a stream of meshes all representing the same object with

different levels of detail. Depending on the distance between

the viewer and the object, a suitable level of detail is chosen

to be rendered. However, progressive models actually require

more storage in memory compared to plain polygon meshes.

Moreover, some 3D scenes cannot be decimated efficiently,

since the individual objects already consist of primitive

geometries. In addition, the decimation of certain 3D objects

is not straightforward, e.g. trees and leaves. The performance

depends on the number of faces as well. Other researchers

suggest to use imposters and/or a 3D image cache to improve

rendering performance. But they require the knowledge of

the 3D scene for segmentation or partition of the space.

For range images from a time-of-flight (TOF) camera, these

methods can not be used directly.

In this work, we present a client-server system which

can automatically simplify complex 3D scenes in real-time

and display them interactively on handheld devices. On the

server side, the depth and normal information are taken

either from a 3D rendering server or from a TOF camera.

By using this information of the current view, we extract

a coarse 2D mesh using feature edges in the image as

constraints. We further exploit the depth value of each vertex

to get a 2.5D mesh representation, which approximates the

current view of the original 3D scene. This textured mesh is

then streamed to the mobile client for rendering. In order to

further augment the visual experience, we utilize the mobile

device’s built-in sensors to detect the spatial relation between

the user’s face and the device, using the front-facing camera

to detect the face position or using the gyroscope to detect

the device pose. We adjust the view frustum according to

this position/pose.

For the interaction we designed two use cases: One is a

“tour guide” mode, in which a pre-defined camera path leads

through the virtual scene. The other one is a “free walk”

mode, where the user can change the viewing position by

using touch gestures, and adjust the viewing orientation by

changing the relative position of his face to the front-facing

camera.

Besides designing the overall system with a render-server,

3D display client, and real-time face/pose detection, our

Server
View

3D scene

Renderer

Color

Depth

Normals

Laplace

Delta

Merge

Triangulation

View requests

Face DetectionTouch events

Rendering 10 ~ 30 Hz

Client

2.5D Scene
information, 2 Hz

View updates

Vectorization
Pose detection

Figure 1. Architecture of our client-server system. Geometry updates for the client are sent at 2 Hz, interaction via face/pose detection on the client is
done at 10 to 30 Hz (using face detection or gyroscope).

main technical contribution is a highly efficient algorithm

that decomposes a frame buffer (or a range image) with

per-pixel depth and normal information into a sparse set of

planar regions which can be textured with the current color

framebuffer (or RGB image). Compared to mesh decimation

algorithms, our approach performs much faster and can

decimate any image rendered by a system providing depth

and normal information, such as OpenGL or a TOF camera.

Our resulting coarse mesh representation is simple enough

for real-time display on today’s mobile devices.

II. RELATED WORK

There are various methods to extract feature edges and

detect line segments from 2D images. Isenberg et al. [1]

provided a survey on algorithms for computing polygonal

model silhouettes. Von Gioi et al. [2] proposed a parameter-

less linear-time line segment detector which gave accurate

results. Compared to state-of-the-art line segment detection

algorithms, their approach is fast and can reduce the false

detection of edges for natural images. But the method is not

suitable for depth images, especially for organic objects that

have smooth surfaces, because no line segments are detected

on the surface.

When trying to construct a coarse mesh, one can use mesh

decimation to go from a dense sampling to a less dense

one. There has been an enormous amount of research in this

area of computer graphics. Gotsman et al. [3] presented a

survey of simplification methods and 3D mesh compression

techniques. A good overview of state-of-the-art algorithms

are given in the book by Botsch et al. [4]. Many of these

methods are not fast enough for our application. One fast

stochastic decimation model has been introduced by Wu and

Kobbelt [5], but it still does not achieve the performance

needed for real-time streaming. The nature of decimation

methods is that they start from a complex model and simplify

it, whereas our method constructs a sparse mesh directly

from visible feature edges in image space. Hence we can

achieve near real-time processing speed.

Some researchers reconstructed the mesh representation

from depth images. Pulli and Pietikäinen [6] suggested a

range image segmentation method based on depth informa-

tion and surface normals. Pajarola et al. [7] proposed a fast

depth-image meshing algorithm based on restricted quadtree

triangulation [8]. In their results, they only show single

objects or simple 3D scenes consisting of a few objects. For

complex geometry scenes, e.g. urban scenery, this method

could still result in a rather dense mesh for transmission and

visualization.

A problem of the range-image based mesh reconstruction

is the “rubber sheets” at silhouette boundaries between fore-

ground and background objects due to depth discontinuity.

Mark et al. [9] avoided this occlusion artifacts by warping

two different reference frames and compositing the results.

Pajarola et al. [7] blended several reference depth-meshes to

synthesize new views.

For visualization of urban scenery, imposter based ap-

proaches were introduced. Sillion et al. [10] segmented

the urban scene into two parts, the local 3D model and a

set of imposters used to represent the distant scenery. The

segmentation is based on the city-block-structure. To extend

cache life of imposters, the depth information of the distant

landscape is used to build a sparse textured mesh, which

is similar to our approach. But their augmented imposter

only considers depth discontinuity, while our method also

takes normal discontinuity into account, which gives a

more accurate representation of building facades. Similarly,

Decoret et al. [11] improved the imposters by using multi-

layered imposters to reduce the occlusion error. Imposter

based approaches are good solutions for urban scenery

visualization, but they are not suitable for general 3D scenes

or range images. First, the knowledge about 3D scenes and

city blocks is not always available for the segmentation.

Second, the viewpoint is restricted to the ground level for

city walk-through.

To reduce the workload of static 3D scene rendering,

Schaufler et al. [12] combined concepts of imposters, hierar-

chical scene subdivision and levels of detail in order to cache

three dimensional images of a virtual environment. A similar

approach is also introduced by Shade et al. [13]. These

algorithms need knowledge of the 3D scene for partitioning,

which is not known for TOF camera input.

A system that uses view dependent simplification for

rendering on mobile devices was developed by Lluch et al.

[14]. The authors implement this as a client-server rendering

architecture. Their system is useful, but limited to triangle

based geometry, whereas our approach can take any input,

as long as depth and normal buffers are supplied.

Lee [15] implemented an on-screen view into a 3D world

using face tracking. He used a Wii remote to track the

user’s head movements. This is not practical for our scenario,

where the user has only a small handheld device, without any

extra input devices. This is why we opted to use face/pose

detection instead.

A time-of-flight camera (TOF camera) is a camera system

which can capture distance information using the time-

of-flight principle [16]. Hirschmuller and Scharstein [17]

built a dataset of stereo images including color and depth

images. Microsoft released Kinect for its game console

Xbox 360 [18], which uses Light Coding technique [19]

to generate depth images. OpenKinect [20] provides open

source libraries for using Kinect. OpenNI [21] recently

released their skeleton tracking sdk for kinect development.

III. SYSTEM ARCHITECTURE

The system we present in this paper is based on a client-

server architecture. The server renders a complex 3D scene

using OpenGL and takes the per-pixel depth and normal

information to detect feature edges. After that we perform

a line growing algorithm to extract monotonic feature seg-

ments. These are then converted from a pixel representation

to a set of line vectorization using an algorithm we call

Inverse Bresenham. The resulting edge vectors are used as

constraints in a Delaunay triangulation to build the final

2.5D mesh. The geometry is transmitted to the mobile client

together with the color image of the current view. See Fig. 1

for an overview of the system.

The client uses two threads, one for rendering the textured

mesh using OpenGL ES, the other for image capture and

face detection (or pose detection). Once a face/pose is

detected, the rendering thread will receive a notification

about the face position (or device pose) and the virtual

camera view will change accordingly. The viewpoint will

also change when the user navigates using touch gestures.

With our textured 2.5D representation we can easily achieve

frame-rates > 10 Hz on a consumer smart phone. If the

viewpoint changes too much, this movement will be sent as

a request to the server to stream a new 2.5D mesh.

Using this kind of client-server architecture and a 2.5D

mesh instead of a simple video stream has several advan-

tages. First, at a lower frame rate (2 Hz) we can spend more

bits on each individual frame, which results in higher visual

quality. Second, whenever the connection to the server de-

teriorates, the user still has an immersive experience, due to

the locally available geometry information. Third, and most

important, we reduce the lag that the user experiences, since

navigation is evaluated locally. Compared to a streamed

video, where the user input has to be transmitted to the

Figure 2. Input to our system. Top: synthetic images (color, depth,
normals), Bottom: TOF images [17] and Kinect images (color, depth)

server, and a video stream has to be sent back, we can hence

reduce the perceived system latency significantly.

Since we strive for real-time with a guaranteed 2 Hz

update on the mesh data for the client, we have to limit

the time budget for each step in our pipeline. We assume

that it takes around 150ms to transmit all data to the client

and incorporate the feedback from the client. Furthermore

we allocate 250ms for the rendering of the framebuffers and

compression of the raw image data. That leaves 100ms for

the 2.5D mesh generation.

The mesh generation time budget is further divided into

four parts: the edge detection (5ms), pixel sequence growing

(50ms), inverse Bresenham algorithm (5ms), and constrained

Delaunay triangulation (40ms).

IV. COARSE 2.5D MESH GENERATION

The key aspect of our proposed method is an efficient

approximation of the rendered 3D scene by a coarse, single

layer depth mesh. In the following paragraphs, we will

explain how our algorithm generates this mesh.

A. Rendering Server

The input to our algorithm are three framebuffers of

the same image, see Fig. 2. The first is simply the color-

buffer of the rendering result. The second is a linear depth

buffer of the scene, which gives us information about

depth discontinuities. The third framebuffer is the normal

buffer, containing the surface normals per pixel in world

coordinates. This buffer helps to detect feature edges of the

geometry and is easy to generate for synthesized images.

The input is not limited to 3D scene rendering results.

Alternatively, our system can also take inputs (depth image

and RGB image) from a TOF camera. For images where

we only have the depth information, the normals can be

approximated by computing the gradients of the smoothed

depth image.

B. Image Segmentation

We use a Cut-Off distance to segment the image into

foreground and background, based on the pixel depth values.

There are two reasons for this. First, the user is more

interested in objects that are near, than the ones which are far

away, hence it is sufficient to compute the correct parallax

for nearby objects. Second, due to perspective projection

the displacement of a point P (x, y, z) in the world space

will be hardly visible, if P is far away from the camera. By

assuming a symmetric frustum and viewport transformation,

we project P from the world space to the window space:

Pwin =
(

w
2

(

1− n
r
· x
z

)

h
2

(

1− n
t
· y
z

))T
, (1)

where w and h are the width and height of the window.

n, r, t is near, right, and top clipping plane. If P moves to

P ′ in the world space, the corresponding displacement in

window space is:

‖Pwin − P ′

win‖ ≈ (2|z|)−1
√

A(x′ − x)2 +B(y′ − y)2 ,
(2)

where A equals w2n2

r2
and B equals h2n2

t2
, which are con-

stants. Here we assume |z′ − z| is much smaller than |z|.
We set thresholds Tx, Ty for viewpoint updating. Therefore

we have |x′ − x| < Tx and |y′ − y| < Ty . To make the

on-screen disparity of P and P ′ less than 1 pixel, we need

to make ‖Pwin − P ′

win‖ < 1, which implies:

|z| > 0.5
√

AT 2
x +BT 2

y . (3)

Our Cut-Off distance is computed using (3). In the following

steps, only the foreground information is processed.

C. Edge Detection

The goal of edge detection is to find out all high frequency

changes, i.e. visible edges, of the current view. We compute

the second-order derivative (Laplacian operator) of the depth

image, search for zero-crossing points and perform a binary

thresholding θ, so that only the edges are highlighted. The

result image is:

Ilap(x, y) = Binaryθ(∇
2I(x, y)) (4)

For the normal image, we compute the normal change

between neighboring pixels along horizontal and vertical

direction, scale the results to the same range as that of the

depth image, and store the maximum normal change for

every pixel:

∆nx = 〈ni,j , ni+1,j〉 (5)

∆ny = 〈ni,j , ni,j+1〉 (6)

Idot(x, y) = s ·max (1−∆nx, 1−∆ny) (7)

The output of the edge detection is the combination of Ilap
and Idot , see Fig. 3(a):

IED(x, y) = max(Ilap(x, y), Idot(x, y)) (8)

A smooth or organic surface has no depth discontinuity,

but in a TOF camera image, the depth values are quantized,

which will result in small depth discontinuity on the surface.

By lowering the threshold of the Laplacian filter, we can

detect slight depth discontinuities on the surfaces of organic

objects, see Fig. 3(b).

(a) Synthetic data. (b) TOF image.

Figure 3. Result of Edge Detection.

4 8

4 7

5 2

2 3

9 6

3 5

7 5

2 8

8 9

5 7
9

Figure 4. The maximum quad-tree stores in each inner node the maximum
of its four children. Deletion updates take at most O(logn), if the update
needs to be propagated to the root node. In the best case the update takes
O(1).

D. Monotonic Line Growing

The output of the edge detection is a grayscale image

where all edgels are highlighted. In order to generate a linked

list of pixels as input for the subsequent line vectorization,

we follow a greedy strategy to find monotonic pixel se-

quences in the intensity image. I.e. from the starting position

the x- and y-coordinate of the pixel must monotonically

increase or decrease.

We use a maximum-quad-tree to efficiently find and up-

date the edge pixel with the highest intensity. The maximum-

quad-tree is a standard quad-tree, but augmented to become

a heap-like structure. The root node of the tree contains the

coordinate and value of the pixel with the highest intensity

(see Fig. 4). When we take a pixel out of the tree, the

update propagates from the leaves to the root node. At most

O(log n) changes to the tree have to be performed per pixel

deletion, where n is the number of pixels in the tree. Since

we use a quad-tree, no re-balancing is needed, as is the case

for a traditional heap. Obviously this comes at the expense

of higher memory consumption (33%), since our quad-tree

always has maximum fan-out.

The line growing procedure picks the maximum pixel in

the tree, and monotonically grows the pixel sequence by

continuing with the strongest edge pixel in the direct 8-

neighborhood. This is done until either the image border

is reached, or no more non-zero pixels can be found, or the

monotonic growing direction is changed. Then the next pixel

sequence is started. Pixel sequences that are shorter than a

certain number of pixels are discarded. In our experiments

we used ten pixels as the longer bound threshold, see

Fig. 5(a) and 5(b).

E. Inverse Bresenham Algorithm

To vectorize a linked list of points into straight line seg-

ments, Lowe [22] introduced an algorithm which recursively

subdivides a curve at the point of maximum deviation. Thus

he can generate a good approximation of line segments even

from noisy data. But this approach needs to compute a point-

line distance for every linked point, which is expensive.

To accelerate this process, we identify sub-sequences that

correspond to the rasterization pattern of a line segment by

utilizing the monotonic pixel sequences obtained in the last

section.

Let {pi} be such a sequence of pixels. Due to the

monotonicity of the sequence we can always flip the signs

of the x and y coordinates such that only three different

direction vectors vi = pi+1 − pi can occur, namely

x =
(

1 0
)T

,y =
(

0 1
)T

,d =
(

1 1
)T

. (9)

We can further simplify this sequence of direction vectors

by replacing each occurence of the vector d with the two

vectors x and y which corresponds to adding one auxiliary

pixel to the sequence.

Now we have to characterize sequences of direction vec-

tors {di} which could have emerged from the rasterization

of a single line segment. The defining property of such

sequences is the constant slope m, which in our case has to

lie in the interval [0,∞) due to monotonicity and optional

sign flips. Since the slope m defines the ratio of the number

of occurences of the vectors x and y respectively, we can

derive the following regular expression for rasterized line

segments:

a bn0 a bn1 a . . . a bnj a . . . (10)

where there exists an integer k such that for the integer run

lengths nj of b-repetitions it holds that nj ∈ {k, k + 1}. If

the slope m is below 1 then in this expression the symbol

a corresponds to the vector y, b corresponds to x and k ≤
1/m < k + 1. If m > 1, we find a corresponds to x, b
corresponds to y and k ≤ m < k + 1.

If the slope m of the line to be vectorized is known in

advance, the above regular expression can be parsed by a

simple regular automaton. However, in our case the slope is

unknown a priori and hence we have to equip our automaton

with a float variable m which stores the currently estimated

approximate slope. The following pseudo code implements

this automaton, where we assume for simplicity that the

input sequence of direction vectors {di} has already been

converted into a sequence of integer run lengths {nj} by

counting repetitions.

m = n_0 ;

for j = 1 to ...

{

if | m - n_j | > 1 then stop

m = (m + n_j) / 2

}

The “trick” in this implementation lies in the fact that

initially m is set to the integer value n0 such that both

(a) Synthetic image. (b) TOF image.

(c) Synthetic image. (d) TOF image.

Figure 5. Top: Monotonic Line Growing. Bottom: Inverse Bresenham.
Each color stands for a pixel sequence (or line segments).

nj = n0−1 and nj = n0+1 can pass the stopping criterion

as long as the value of m does not change. Then when

the first nj 6= n0 is parsed, the value of m is adjusted

to a non-integer value such that from now on only two

possible integer run lengths are accepted. Results are shown

in Fig. 5(c) and 5(d).

F. Triangulation

The Inverse Bresenham step will result in line vectoriza-

tions that are now used as input to a constrained Delaunay

triangulation [23]. Vertices and edges are inserted into the

mesh, the Z-coordinate being set to the corresponding value

from the depth buffer image, see Fig. 6(a) and 6(b).

(a) Synthetic image. (b) TOF image.

Figure 6. 2D mesh resulting from the Constrained Delaunay Triangulation.

V. IMMERSIVE DISPLAY

The key point of interaction on mobile platforms is

intuitiveness, which requires to map our “natural” actions

from the physical world into the virtual world. On the client

side of our system, besides using the touch-screen gestures,

we further augment the interaction by using the front-facing

camera or the gyroscope of the mobile device. The spatial

relation between the user’s face and the device is detected

and then the view frustum is updated accordingly. This gives

the illusion of immersiveness, i.e. as if the screen were a

window into the 3D world, creating a realistic illusion of

depth and space. This is inspired by Lee [15], who used

the infrared camera in the Wii remote and a head mounted

sensor bar to track the location of the user’s head and

render view dependent images on the screen. Lee’s method is

suitable for desktop display and free body movement several

meters away from the infrared camera, while our approach

fits the mobile use case better. Since the physical size of the

mobile screen is small and we always hold it in our hand to

manipulate, it is more natural to tilt the phone than to move

our head around to look into the virtual space.

When comparing face detection and gyroscope, we find

that both can be used to achieve a virtual window effect.

The integrated gyroscope is very accurate and stable. The

update rate can be much higher (up to 100Hz) than that

of the face detection (10Hz). However only device rotation

can be detected. While using face detection, both the device

and the face movement can be detected, and this will assure

that the illusion works. In addition, we can roughly compute

the distance between the camera and the face by using the

detected face scale and a preset reference distance. This

screen-face distance can be used to modify the focal distance

of the view frustum, so that when the user gets closer to the

screen, he will have a wider field of view. This is consistent

to the viewing experience in the real world when walking

towards a window.

We propose two different modes for interaction: One is

“tour guide”, and the other one is “free walk”.

In the “tour guide” mode, we define a camera path in

advance. It leads through the virtual scene, so the trajectory

of the virtual camera is fixed. With a rate of two updates per

second the server streams the textured mesh of the current

view to the client for display. Since the camera trajectory

is known, the client can interpolate viewing positions and

render the 2.5D mesh at a framerate > 20Hz.

In the “free walk” mode, the user is allowed to explore

the scene freely. The user can change his position by touch

gestures like panning and pinching. The viewing direction

is changed by face detection or gyroscope. Only if the user

moves or rotates the view by more than a certain threshold,

the server will generate a new 2.5D mesh and send it to the

client. Otherwise the 2.5D information is sufficient to render

a properly distorted view directly on the mobile device.

VI. RESULTS

We implemented the system in C++. The server runs on

a desktop PC with a Dual-Core 2.0 GHz CPU and 4 GiB

memory. In the current version, the coarse mesh generation

runs mostly on the CPU, with the edge detection being

implemented in GLSL on the GPU. The client device is

an Apple iPod Touch 4G at 1 GHz with 256 MiB RAM. To

communicate with the server, we use a Wi-Fi connection.

We use the face detection API of OpenCV, which im-

plements the Viola-Jones object detection algorithm [24].

The input is the captured video stream from the integrated

camera. We achieve a detection rate of around 10 FPS.

For the depth and normal buffer, we use a resolution of

640×480 pixels. Each view rendered on the server contained

0.5 to 0.8 million triangles, and there were more than 1.6

million triangles in the whole scene. The render server

uses multiple render passes to achieve many special effects,

including normal mapping, dynamic shadow maps, interior

mapping, and much more. This would not be possible to

render efficiently on the mobile device. For the TOF camera

input, if the image resolution is higher than 640× 480, we

scale the width down to 640 and keep the original ratio.

Table I shows the time consumption for each processing

step of our Coarse 2.5D Mesh Generation on a city scenery

view, see Fig. 7(b). The total time we need to build the

mesh is around 100 ms. The processing time is related to

the complexity of the scene. For simple scenes it is faster,

see Table III.

Fig. 7(b) shows one of our depth meshes containing 5,000

vertices and 9,700 faces, which would result in 105 KiB

mesh data to transmit (vertices, texture coordinates and

indices, each value is stored in a ushort or half precision

float). Since on a mobile display small details are hardly

visible, a sparse mesh suffices. To further reduce complexity

we add a threshold to the pixel-sequences of the monotonic

line growing algorithm. Hence we would first consider the

longer pixel-sequences, which are more likely to represent

relevant parts of a contour that separates different planar

regions. In our experiment, we found out that when using

50% of the pixel-sequences there were no visible artifacts,

and the mesh contained about 3,300 vertices and 6,400 faces

(70 KiB), see Fig. 7(c). Together with the mesh data the

server needs to send the color buffer of the current view

to the client. The textures have a resolution 512× 512 and

are stored in JPEG format. The image file size is around 40

KiB each. Therefore per textured mesh about 110 KiB are

streamed from the server to the client every half second or

when the server receives the update request.

We compare our depth mesh to one generated by deci-

mating a dense mesh which represented the contents of the

depth buffer (i.e. each pixel in the depth image is treated as

a vertex), using an optimized implementation of a standard

decimation technique [25]. For the results compare Fig. 7(a)

and 7(b). Our algorithm only places vertices on the feature

edges, thus producing a more sparse representation of the

scene, and is two orders of magnitude faster, see Table II.

Our approach works for rendered polygons and TOF camera

images, see Fig. 8 and 9. On the surface of organic objects,

by correct thresholding, depth discontinuities are detected

as feature edges which can then be used to build the 2.5D

mesh. The time consumption for complex scenes is higher

than single object due to the increasing amount of feature

Table I
RELATIVE TIME CONSUMPTION FOR DIFFERENT PROCESSING STEPS.

Step Laplace ∆ Normal Merge Buffer MaxTree Line Growing Inv. Bresenham CDT Sum

Timing(ms) < 1 < 1 < 1 22 40 2 42 106

(a) A decimated depth mesh (b) Coarse 2.5D mesh, 75% pixel se-
quences.

(c) Coarse 2.5D mesh, 50% pixel se-
quences.

Figure 7. (a) A raw depth mesh (640 by 480, each pixel in the depth image is treated as a vertex) is decimated to 10,000 faces, by a standard mesh
decimation algorithm using error quadrics. (b) Our mesh, 9,720 faces. (c) Our mesh, 6,423 faces.

Figure 8. Examples of our 2.5D mesh generation of 3D models. From left to right: rendered polygon model, depth-image, monotonic line growing,
inverse bresenham, 2.5D mesh.

Table II
TIME CONSUMPTION FOR MESH GENERATION

Mesh #Vertex #Face Time(sec)

Decimated Mesh 6732 10000 10

Our Mesh 75% 5000 9720 0.10

Our Mesh 50% 3343 6423 0.07

Table III
TIME CONSUMPTION OF DIFFERENT MODELS

Input Data #Faces
Model

#Faces
2.5D

Time(ms)

Model Armadillo 100k 8,951 60

Model David 500k 5,549 47

Kinect Sculpture - 4,420 56

TOF camera Baby - 8,082 85

edges, but it still fits into our time budget, see Table III.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a client-server architecture for

displaying complex 3D scenes on mobile devices. On the

server side, we introduced a highly efficient algorithm to

decompose the geometry represented by the current view’s

depth profile into a small set of textured polygons. The

textured mesh is then streamed to the client for rendering. To

augment the viewing experience on the mobile platform, we

utilized Viola-Jones face detection algorithm to detect the

face position. Based on that the view frustum is changed

accordingly, so that the user can look into the 2.5D scene

through a virtual window. When the face movement is higher

than a threshold, the view position is updated to the server

to request a new textured mesh.

Currently we use Viola-Jones face detection which is

sensitive to light condition, and the detected face positions

are not very stable. The future work would be to implement

a more sophisticated algorithm, e.g. considering optical flow.

Second, after foreground/background segmentation there are

holes in the background. We could blend meshes of multiple

reference frames to avoid disocclusion artifacts. In addition,

in our mesh generation pipeline, Monotonic Line Growing

is the main bottleneck, such that implementing this step on

the GPU would accelerate the conversion even more.

ACKNOWLEDGMENT

This work was supported in part by NRW State within the

B-IT Research School. It was also supported by the UMIC

Research Centre, RWTH Aachen University.

Figure 9. Examples of our 2.5D mesh generation using TOF and structured light camera inputs. Left to right: RGB image, depth-image, Monotonic Line
Growing, Inverse Bresenham, 2.5D mesh. Top: images using Kinect, Bottom: dataset of [17].

REFERENCES

[1] T. Isenberg, B. Freudenberg, N. Halper, S. Schlechtweg,
and T. Strothotte, “A developer’s guide to silhouette
algorithms for polygonal models,” IEEE Comput. Graph.
Appl., vol. 23, pp. 28–37, July 2003. [Online]. Available:
http://portal.acm.org/citation.cfm?id=858619.858656

[2] R. von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall,
“Lsd: A fast line segment detector with a false detection
control,” PAMI, vol. 32, no. 4, pp. 722 –732, 2010.

[3] C. Gotsman, S. Gumhold, and L. Kobbelt, “Simplification
and compression of 3d meshes,” in In Proceedings of the
European Summer School on Principles of Multiresolution in
Geometric Modelling (PRIMUS. Springer, 1998, pp. 319–
361.

[4] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Levy,
Polygon Mesh Processing. AK Peters, 2010.

[5] J. Wu and L. Kobbelt, “Fast mesh decimation by multiple-
choice techniques,” in VMV, 2002, pp. 241–248.

[6] K. Pulli and M. Pietikäinen, “Range image segmentation
based on decomposition of surface normals,” in SCIA, 1993.

[7] R. Pajarola, M. Sainz, and Y. Meng, “Dmesh: Fast depth-
image meshing and warping,” Int. J. Image Graphics, vol. 4,
no. 4, pp. 653–681, 2004.

[8] R. Pajarola, “Large scale terrain visualization using
the restricted quadtree triangulation,” in VIS, 1998.
[Online]. Available: http://portal.acm.org/citation.cfm?id=
288216.288219

[9] W. R. Mark, L. McMillan, and G. Bishop, “Post-rendering
3d warping,” in I3D, 1997, pp. 7–16. [Online]. Available:
http://doi.acm.org/10.1145/253284.253292

[10] F. Sillion, G. Drettakis, and B. Bodelet, “Efficient impostor
manipulation for real-time visualization of urban scenery,”
vol. 16, no. 3, pp. 207–218, 1997. [Online]. Available:
http://artis.imag.fr/Publications/1997/SDB97

[11] X. Décoret, F. X. Sillion, G. Schaufler, and J. Dorsey, “Multi-
layered impostors for accelerated rendering,” Comput. Graph.
Forum, vol. 18, no. 3, pp. 61–73, 1999.

[12] G. Schaufler, W. Stürzlinger, J. Kepler, U. Linz, and A-Linz,
“A three dimensional image cache for virtual reality,” Comput.
Graph. Forum, vol. 15, no. 3, pp. 227–236, 1996.

[13] J. Shade, D. Lischinski, D. H. Salesin, T. DeRose, and
J. Snyder, “Hierarchical image caching for accelerated
walkthroughs of complex environments,” in SIGGRAPH,
1996, pp. 75–82. [Online]. Available: http://doi.acm.org/10.
1145/237170.237209

[14] J. Lluch, R. Gaitán, E. Camahort, and R. Vivó, “Interactive
three-dimensional rendering on mobile computer devices,” in
ACE, 2005, pp. 254–257.

[15] J. C. Lee, “Hacking the Nintendo Wii Remote,” IEEE Perva-
sive Computing, vol. 7, pp. 39–45, 2008.

[16] S. B. Gokturk, H. Yalcin, and C. Bamji, “A time-of-flight
depth sensor - system description, issues and solutions,” in
CVPRW’04. IEEE Computer Society, 2004. [Online]. Avail-
able: http://portal.acm.org/citation.cfm?id=1032634.1032926

[17] H. Hirschmuller and D. Scharstein, “Evaluation of cost func-
tions for stereo matching,” in CVPR, 2007.

[18] Microsoft, “Kinect,” Dec 2010, http://www.xbox.com/en-US/
kinect.

[19] PrimeSense, “Light coding,” Dec 2010, http:
//www.primesense.com/.

[20] T. O. Project, “Openkinect,” Dec 2010, https://github.com/
OpenKinect/libfreenect/.

[21] T. O. Organization, “Openni,” Dec 2010, http://www.openni.
org/.

[22] D. G. Lowe, “Three-dimensional object recognition from sin-
gle two-dimensional images,” Artificial Intelligence, vol. 31,
pp. 355–395, 1987.

[23] “CGAL, Computational Geometry Algorithms Library,”
http://www.cgal.org.

[24] P. Viola and M. Jones, “Robust real-time object detection,”
IJCV, vol. 57, pp. 137–154, 2004.

[25] M. Garland and P. S. Heckbert, “Surface simplification using
quadric error metrics,” in SIGGRAPH ’97, 1997.

