Simplification and Compression of 3D Meshes

Craig Gotsman!, Stefan Gumhold?, and Leif Kobbelt®

! Computer Science Department, Technion, Israel
2 WSI/GRIS, University of Tiibingen, Germany
3 Computer Graphics Group, RWTH-Aachen, Germany

Abstract. We survey recent developments in compact representations of 3D mesh
data. This includes: Methods to reduce the complexity of meshes by simplification,
thereby reducing the number of vertices and faces in the mesh; Methods to resample
the geometry in order to optimize the vertex distribution; Methods to compactly
represent the connectivity data (the graph structure defined by the edges) of the
mesh; Methods to compactly represent the geometry data (the vertex coordinates)
of a mesh.

1 Introduction

Interactive display of three-dimensional content is an important component
for applications in electronic commerce, medical and scientific visualization,
engineering analysis and the game industry. Large amounts of 3D content are
processed and transmitted over the Internet. Among several representations
polygonal meshes are used most often as surface representation because of
their wide support in VRML, OpenGL and other file formats and graphics
libraries.

A polygonal mesh consists of three different kinds of mesh elements: ver-
tices, edges and faces. The information describing the mesh elements consists
of the mesh connectivity and mesh geometry. The mesh connectivity describes
the incidence relations between the mesh elements. The incidence relations
specify for each face the vertices and edges on the bounding loop, for each
edge the end vertices and the faces to which the edge is incident, and for each
vertex the incident edges and faces. Two vertices or two faces are called ad-
jacent, if there exists an edge incident to both. The mesh geometry specifies
a position in space for each vertex.

In this chapter we survey three approaches to reducing the complexity of
polygonal meshes. Section 2 introduces simplification algorithms that reduce
the number of elements in a mesh. Section 3 surveys recent algorithms that
compactly encode the incidence relations of the mesh elements. Finally, sec-
tion 4 describes coding techniques for the mesh geometry. The remainder of
the introduction describes polygonal meshes in more detail and introduces
the basic coding techniques used in the following sections.

2 Gotsman, Gumhold, Kobbelt
1.1 Meshes

Definitions. A mesh is called manifold if each edge is incident to only one
or two faces and the faces incident to a vertex form a closed or an open fan.
Non-manifold meshes can be cut into manifold meshes by replicating vertices
with more than one fan and edges incident to more than two faces.

The orientation of a face is the cyclic order of the incident vertices. There
are two possible orientations for each face (clockwise and counter-clockwise).
The orientation of two adjacent faces is compatible, iff the two vertices of the
common incident edge are in opposite order. A mesh is called orientable, iff
there exists a choice of face orientations that makes all pairs of adjacent faces
compatible.

The Euler formula (see [48] page 145 for an introduction to the more gen-
eral Euler-Poincare formula) describes the relationship between the number
of vertices v, edges e and faces f in dependence of the topological type of an
orientable manifold mesh. If s is the number of connected components, g the
genus and b the number of border loops of the mesh, then

v—e+f=2(s—-g)—-b=:x, (1)

where x is called the Euler characteristic of the mesh. A mesh has genus
g, iff one can cut the mesh along 2g closed loops without disconnecting the
mesh. The sphere has genus zero and the torus has genus one. Any mesh of
genus g can be continuously deformed into a sphere with g handles. In the
special case of a closed manifold triangular mesh each edge has exactly two
incident triangles and each triangle three incident edges: 2e = 3 f. This yields
2v — f = 2x and as yx is typically small f ~ 2v.

A mesh is called simple, iff it is connected, orientable, manifold, of genus
zero and has no more than one border loop.

Standard Mesh Representation. The mesh geometry is mostly represented as
fields indexed by the mesh elements. For example, the vertex locations are
stored in a vector valued field indexed over the vertices.

The connectivity is often defined by a face vertex incidence table. For
each face an oriented cyclic list of indices of the incident vertices is given. In
VRML the IndexedFaceSet-node defines the face-vertex incidence table by
one list of indices, where the index —1 separates different faces. The order of
the vertex indices in a face also defines the face-edge incidences. Between each
two successive vertices there must be an edge in the face loop. All face-edge
incidences of one edge can be collected in linear time by bucket sorting of the
reference pairs of incident vertices. This approach can be used to efficiently
build a data structure, such as the half-edge [48] or winged-edge [3] data
structures that allow for enumeration of incident and adjacent mesh elements
in time, proportional to the number of enumerated elements.

Simplification and Compression 3

1.2 Coding techniques

The mesh compression schemes to be introduced in Sections 3 and 4 translate
a mesh into sequences of symbols and/or indices. If the minimum index is
imin and the maximum index iy, the coding of indices can be reduced to the
coding of symbols from an alphabet {o;_. ,0i .. +1,---;0i.. }- In the general
case we assume an alphabet A = {01,...,0,} to be given. The compression
schemes translate the mesh connectivity and/or geometry into a sequence
Sp = 04,04, .. .0y, of n symbols. As each symbol can be encoded with [log, a|
bits, the sequence S, can be encoded in n [log, a] bits. Suppose now that
half of the symbols in S, are o;. Then the sequence can be encoded in
only n + % [logy(a — 1)]) bits by first coding one bit for each symbol noting
whether the symbols is ¢; and only when this is not the case, encoding the
symbol as before. Hence it is possible to encode a sequence of symbols more
efficiently, if the probability of some symbols is higher than that of others.
Let #;(S,) be the number of symbols o; in the sequence S, and p;(S,) =
#;/n the probability of symbol o;. The probabilities define the distribution
of the symbols in a sequence. The following two coding schemes exploit the
distribution of the symbols in the general case. The average amount of bits
per symbol spent by an optimal coding scheme for a given symbol distribution
p; is called the entropy and computes to

a
— Zpi -log, p; bits per symbol. (2)

i=1

Huffman Coding. Huffman [28] devised a coding scheme that assigns to each
symbol o; a bit code ¢; of variable length. For unique decoding it is essential
that no bit code is a prefix of another code. This can be guaranteed by
defining the bit codes from a binary tree with the symbols as leaves. The
path from the root to a symbol ¢; on the Kt tree level defines the bit code ¢
as a sequence of k bits, where each bit tells if the path moves from the current
node to the left or right child. Two of the codes defined in this way can violate
the prefix condition, iff one symbol is within the defining path of another,
which is impossible as all symbols are leaves. The binary tree is built from a
forest of leaves (o, p;) such that the probability of the symbols is balanced.
As long as there is more than one tree in the forest, a new node is built with
the two trees of smallest probability as children and the sum of the child
probabilities as probability. Figure 1 a) illustrates the tree construction on
an example, where the symbol counts were used instead of the probabilities.
Huffman showed that this procedure yields the tree with the most efficient
coding of the symbol sequence. To avoid having to encode the binary tree
and compute the symbol probabilities in a preprocessing step, Cormack [12]
describes an algorithm that generates the Huffman codes on the fly at the
encoder and the decoder. It builds the binary tree over the symbol counts
#i, which are all initialized to zero. As each symbol o; of the sequence is
encoded, the count #; is incremented and the binary tree updated.

4 Gotsman, Gumhold, Kobbelt

sequence S;;=ABCBAABDAA S,,=ABCBAABDAA output
0 A B_ICID| 7
[ABCD10] | l._, l, !
dla 0 A C 01
£|g [BCD 5] ,,,,,,,,, ,
ziS 0.25[] 0.4
3B [co 2, bt 1B IClD
037 A [B [C|D]0.385| 10000
leaves (A 5) (B, 3 (C 1) D 1 o
codes 10 110 111 03775 A | B [c[p]0.382
: : . 01101110
output 01011010001011100 [A [B [CID|
(a) (b) 0.37836625 0.3783746875

Fig. 1. Illustration of a) Huffman and b) arithmetic coding

Arithmetic Coding. Huffman coding is only optimal if the symbol probabil-
ities are negative powers of two. In arithmetic coding no fixed bit codes are
assigned to the symbols. Instead coding is done in two phases. In the first
phase the symbol probabilities are used to recursively define an interval sub-
division of [0, 1] as illustrated in Figure 1 b). In the first line the interval [0, 1]
is subdivided into four blocks — one for each symbol — where the width of the
block is equal to the symbol probability. The first A in the sequence defines
the subinterval [0, 0.5], which is taken as the new base interval and split again
into four blocks. The symbol B specifies the interval [0.25,0.4] and so on. The
complete sequence results in a very tiny target interval around 0.37837, which
uniquely represents the symbol sequence.

In the second phase the target interval is encoded via a binary subdivision
that initializes its subdivision interval to [0,1], and moves into the lower or
upper half until the center of the subdivision interval hits the target interval.
Figure 1 b) also illustrates the interval subdivision of the second phase after
every line as if coding would stop. Above each line the subdivision interval
resulting from the previous line is illustrated by a dotted line with its frontiers
as horizontal bars and its center as the black dot. In the right column the
bits are tabulated with each one successively describing if the interval was
split into the lower (0 bit) or upper (1 bit) half in order to bring the center
inside the target interval. Below each line the subdivision interval after binary
subdivision is shown and the center dot is always inside the target interval.
After the first symbol A has been encoded no subdivision is necessary as the
interval center is still inside the target interval. The subdivision interval is
zoomed with the target interval to the second line. In order to hit inside the
target interval of the B symbol, the subdivision interval moves to the lower
and then to the upper half of the lower half, resulting in two output bits.
Accidentally, the new interval center specifies correctly the successive C and
no further bit has to be encoded. But for the encoding of the next B the
subdivision has to move to the upper half and four times to the lower half
such that the interval shrinks by a factor of 32. In the end 15 bits are needed
to encode the sequence instead of 17 bits for Huffman coding.

Simplification and Compression 5

As the binary subdivision defines a point inside the target interval, the
symbol sequence can be reconstructed by simply checking in which of the
four blocks of the current interval the center of the binary subdivision points.
Witten et al. [63] show how to implement arithmetic coding with integer
arithmetic on an incremental basis. From the interval subdivision scheme it
follows directly that arithmetic coding allows the encoding of each symbol
0;, on average with — log, p; bits and, therefore, the complete sequence with
— > i, np; - log, p; bits. This is the best that can be achieved without more
knowledge about the sequence as it achieves entropy.

2 Mesh Decimation Techniques

2.1 Introduction

Mesh decimation describes a class of algorithms that transform a given polyg-
onal mesh into another mesh with fewer faces, edges and vertices. The deci-
mation procedure is usually controlled by user defined quality criteria which
prefer meshes that preserve specific properties of the original data as much as
possible. Typical criteria include geometric distance (e.g. Hausdorff-distance)
or visual appearance (e.g. color difference, feature preservation) [6]. There

Fig. 2. Decimation of the Stanford Buddha model from 400K triangles to 40K
triangles to 4K triangles.

are many applications for decimation algorithms. First, they obviously can

6 Gotsman, Gumhold, Kobbelt

be used to adjust the complexity of a geometric data set. This makes geom-
etry processing a scalable task where different complex models can be used
on computers with varying computing performance. Second, since many dec-
imation schemes work iteratively, i.e. they decimate a mesh by removing one
vertex at a time, they usually can be inverted. Running a decimation scheme
backwards means to reconstruct the original data from a decimated version
by inserting more and more detailed information. This inverse decimation
can be used for progressive transmission of geometry data [25]. Obviously, in
order to make progressive transmission effective, we have to use decimation
operators whose inverse can be encoded compactly (cf. Fig. 3).

The third class of applications exploits the implicit hierarchical infor-
mation that emerges from mesh decimation. The decimated version of a
polygonal mesh retains the global shape information while the finer levels
of (less significant) detail have been removed. So in terms of multiresolu-
tion decompositions of geometric data, we can consider a mesh decimation
scheme as a decomposition operator: applied to the original data, we obtain
a low frequency component (the decimated mesh itself) and a high frequency
component (the difference between original and decimated). The high fre-
quency component can, for example, be represented simply as a log-file of
the sequence of decimation steps. The reconstruction operator can then per-
form the inverse decimation steps in reverse order to recover the original data
from its low frequency part [22,40].

2.2 Overview

There are several different conceptual approaches to mesh decimation. In
principle we can think of the complexity reduction as a one-step operation or
as an iterative procedure. The vertex positions of the decimated mesh can be
obtained as a subset of the original set of vertex positions, as a set of weighted
averages of original vertex positions, or by resampling the original piecewise
linear surface. In the literature the different approaches are classified into

e Vertex clustering algorithms
e Incremental decimation algorithms
e Resampling algorithms.

The first class of algorithms is usually very efficient and robust. The compu-
tational complexity is typically linear in the number of vertices. However, the
quality of the resulting meshes is not always satisfactory. Incremental algo-
rithms in most cases lead to higher quality meshes. The iterative decimation
procedure can take arbitrary user-defined criteria into account, according to
how the next removal operation is chosen. However, their total computa-
tional complexity in the average case is O(nlogn), and can go up to O(n?)
in the worst case, especially when a global error threshold is to be respected.
Finally, resampling techniques are the most general approach to mesh deci-
mation. Here, new samples are more or less freely distributed over the original

Simplification and Compression 7

piecewise linear surface geometry. By connecting these samples, a completely
new mesh is constructed.

The major motivation for resampling techniques is that they can force the
decimated mesh to maintain a special connectivity structure, i.e. subdivision
connectivity (or semi-regular connectivity). As a result they can be used in
a straight forward manner to build multiresolution representations based on
subdivision basis functions and their corresponding (pseudo-) wavelets [14].

The most serious disadvantage of resampling, however, is that alias er-
rors can occur if the sampling pattern is not perfectly aligned to features
in the original geometry. To avoid alias effects, many resampling schemes to
some degree require manual pre-segmentation of the data for reliable feature
detection [4].

The unstructured hierarchies that emerge from iterative decimation al-
gorithms give rise to generalized multiresolution techniques for meshes with
arbitrary connectivity. While simple basis functions (like in the semi-regular
subdivision setting) are no longer available, we can still mimic the function-
ality of higher order decomposition and smooth reconstruction filters [38,22].

In the following sections we will explain the different approaches to mesh
decimation in more detail. Usually there are many choices for the different
ingredients and sub-procedures in each algorithm. We will also point out the
advantages and disadvantages for each class.

2.3 Vertex Clustering

The basic idea of vertex clustering is quite simple: for a given approximation
tolerance £ we partition the bounding space around the given object into
cells with diameter smaller than ¢. For each cell we compute a representative
vertex position which we assign to all the vertices that fall into that cell. By
this clustering step, original faces degenerate if two or three of their corners
lie in the same cell and consequently are mapped to the same position. The
decimated mesh is eventually obtained by removing all those degenerate faces
[50].

The remaining faces correspond to those original triangles whose corners
all lie in different cells. Stated otherwise: if p is the representative vertex for
the vertices po, ..., p» in the cluster P and q is the representative for the ver-
tices qg..., qm in the cluster @), then p and q are connected in the decimated
mesh if and only if at least one pair of vertices (p;, q;) was connected in the
original mesh.

One immediately obvious draw-back of vertex clustering is that the re-
sulting mesh might no longer be 2-manifold even if the original mesh was.
Topological changes occur when the part of a surface that collapses into a
single point is not homeomorphic to a disc, i.e., when two different sheets
of the surface pass through a single e-cell. However, this disadvantage can
also be considered as an advantage. Since the scheme is able to change the

8 Gotsman, Gumhold, Kobbelt

topology of the given model we can reduce the object complexity very ef-
fectively. Consider, for example, applying mesh decimation to a 3D-model of
a sponge. Here, any decimation scheme that preserves the surface topology
cannot reduce the mesh complexity significantly since all the small holes have
to be preserved.

The computational efficiency of vertex clustering is determined by the
effort it takes to map the mesh vertices to clusters. For simple uniform spatial
grids this can be achieved in linear time with small constants. Then for each
cell a representative has to be found which might require fairly complicated
computations but the number of clusters is usually much smaller than the
number of vertices.

Another apparently nice aspect of vertex clustering is that it automat-
ically guarantees a global approximation tolerance by defining the clusters
accordingly. However in practice it turns out that the actual approximation
error of the decimated mesh is usually much smaller than the radius of the
clusters. This indicates that for a given error threshold, vertex clustering
algorithms do not achieve optimal complexity reduction. Consider, as an ex-
treme example, a very fine planar mesh. Here decimation down to a single
triangle without any approximation error would be possible. In contrast, the
result of vertex clustering will always keep one vertex for every e-cell.

Representative computation The way in which vertex clustering algo-
rithms differ is mainly in how they compute the representative. Simply tak-
ing the center of each cell or the straight average of its members are obvious
choices which, however, rarely lead to satisfying results.

A more reasonable choice is based on finding the optimal vertex position
in the least squares sense. For this we exploit the fact that for sufficiently
small € the polygonal surface patch that lies within one e-cell is expected to
be piecewise flat, i.e., either the associated normal cone has a small opening
angle (totally flat) or the patch can be split into a small number of sectors
for which the normal cone has a small opening angle.

The optimal representative vertex position should have a minimum devia-
tion from all the (regression) tangent planes that correspond to these sectors.
If these approximate tangent planes do not intersect in a single point, we have
to compute a solution in the least squares sense.

Consider one triangle T; belonging to a specific cell, i.e., whose corner
vertices lie in the same cell. The quadratic distance of an arbitrary point x
from the supporting plane of that triangle can be computed by:

(n} x —pi)?,

where n; is the normal vector of T; and p; is the scalar product of n; times
one of T;’s corner vertices. The sum of the quadratic distances to all the

Simplification and Compression 9

triangle planes within one cell is given by

Ex) =) (nf x—p)*. 3)

i
The iso-contours of this error functional are ellipsoids and consequently, the
resulting error measure is called quadric error metric (QEM) [46,16]. The
point position where the quadric error is minimized is given by the solution

I o

If the matrix has full rank, i.e. if the normal vectors of the patch do not lie in
a plane, then the above equation could be solved directly. However, to avoid
special case handling and to make the solution more robust, a pseudo-inverse
based on a singular value decomposition should be used.

2.4 Incremental Mesh Decimation

Incremental algorithms remove one mesh vertex at a time. In each step, the
best candidate for removal is determined based on user-specified criteria.
Those criteria can be binary (= removal is allowed or not) or continuous (=
rate the quality of the mesh after the removal between 0 and 1). Binary crite-
ria usually refer to the global approximation tolerance or to other minimum
requirements, e.g., minimum aspect ratio of triangles. Continuous criteria
measure the fairness of the mesh in some sense; e.g., “round” triangles are
better than thin ones, small normal jumps between neighboring triangles are
better than large normal jumps.

Every time a removal is executed, the surface geometry in the vicinity
changes. Therefore, the quality criteria have to be re-evaluated. During the
iterative procedure, this re-evaluation is the computationally most expensive
part. To preserve the order of the candidates, they are usually kept in a heap
data structure with the best removal operation on top. Whenever removal
candidates have to be re-evaluated, they are deleted from the heap and re-
inserted with their new value. Through this, the complexity of the update-
step increases only in the same way as O(logn) for large meshes if the criteria
evaluation itself has constant complexity.

Topological operations There are several different choices for the basic
removal operation. The major design goal is to keep the operation as simple
as possible. In particular this means that we do not want to remove large
parts of the original mesh at once but rather remove a single vertex at a
time. Strong decimation is then achieved by applying many simple decimation
steps instead of a few complicated ones. If mesh consistency, i.e., topological
correctness, matters, the decimation operator has to be an Fuler-operator
(derived from the Euler formula for graphs) [24].

10 Gotsman, Gumhold, Kobbelt

The first operator one might think of deletes one vertex plus its adjacent
triangles. For a vertex with valence k this leaves a k-sided hole. This hole
can be fixed by any polygon triangulation algorithm [53]. Although there are
several combinatorial degrees of freedom, the number of triangles will always
be k — 2. Hence the removal operation decreases the number of vertices by
one, and the number of triangles by two.

Another decimation operator takes two adjacent vertices p, and q and
collapses the edge between them, i.e., both vertices are moved to the same
new position r [25]. As a result, two adjacent triangles degenerate and can be
removed from the mesh. In total this operator also removes one vertex and
two triangles. The degrees of freedom in this edge collapse operator emerge
from the freedom to choose the new position r.

Both operators discussed so far are not unique. Either case involves some
optimization to find the best local triangulation or the best vertex position.
Conceptually this is not well-designed since it mixes the global optimization
(which candidate is best according to the sorting criteria for the heap) with
local optimization.

A possible way out is the so-called half-edge collapse operation: for an
ordered pair (p, q) of adjacent vertices, p is moved to q’s position [37]. This
can be considered as a special case of edge collapsing where the new vertex
position r coincides with q. On the other hand, it can also be considered as
a special case of vertex deletion where the triangulation of the k-sided hole
is generated by connecting all neighboring vertices with vertex q.

The half-edge collapse has no degrees of freedom. Notice that (p — q) and
(q — p) are treated as independent removal operations both of which have
to be evaluated and stored in the candidate heap. Since half-edge collapsing
is a special case of the other two removal operations, one might expect an
inferior quality of the decimated mesh. In fact, half-edge collapsing merely
sub-samples the set of original vertices while the full edge collapse can act as
a low-pass filter where new vertex positions are computed, e.g., by averaging
original vertex positions. However, in practice this effect becomes noticeable
only for extremely strong decimation where the exact location of individual
vertices really matters.

The big advantage of half-edge collapsing is that for moderate decima-
tion, the global optimization (i.e., candidate selection based on user specified
criteria) is completely separated from the decimation operator which makes
the design of mesh decimation schemes more orthogonal.

All the above removal operations preserve the mesh consistency and con-
sequently the topology of the underlying surface. No holes in the original
mesh can be closed, no handles can be eliminated completely. If a decimation
scheme is also able to simplify the topology of the input model, we have to
use non-Euler removal operators. The most common operator in this class is
the vertex contraction where two vertices p and q can be contracted into one
new vertex r even if they are not connected by an edge [16,54]. This opera-

Simplification and Compression 11

Vertex Removal

Vertex Insertion

Edge Collapse

Edge Split

Half Edge Collapse

Restricted Vertex Split

Fig. 3. Euler-operations for incremental mesh decimation and their inverses: vertex
removal, full edge collapse, and half-edge collapse.

tion reduces the number of vertices by one but it does keep the number of
triangles constant. The implementation of mesh decimation based on vertex
contraction requires flexible data structures that are able to represent non-
manifold meshes since the surface patch around vertex r after the contraction
may no longer be homeomorphic to a (half-)disc.

Distance measures Guaranteeing an approximation tolerance during dec-
imation is the most important requirement for most applications. Usually an
upper bound € is prescribed and the decimation scheme looks for the mesh
with the least number of triangles that stays within € of the original mesh.
However, exactly computing the geometric distance between two polygonal
mesh models is computationally expensive [36,7], and hence conservative ap-
proximations are used that can be evaluated quickly.

The generic situation during mesh decimation is that each triangle T; in
the decimated mesh is associated with a sub-patch S; of the original mesh.
Distance measures have to be computed between each triangle T; and either
the vertices or faces of S;. Depending on the application, we have to take the
maximum distance or we can average the distance over the patch.

The simplest technique is error accumulation [53]. For example, each edge
collapse operation modifies the adjacent triangles T; by shifting one of their
corner vertices from p or q to r. Hence the distance of r to T; is an upper
bound for the approximation error introduced in this step. Error accumu-
lation means that we store an error value for each triangle and simply add
the new error contribution for every decimation step. The error accumulation
can be done based on scalar distance values or on distance vectors. Vector

12 Gotsman, Gumhold, Kobbelt

addition takes into account the effect that approximation error estimates in
opposite directions may cancel each other.

Another distance measure assigns distance values to the vertices p; of
the decimated mesh. It is based on estimating the squared average of the
distances of p; from all the supporting planes of triangles in the patches S;
which are associated with the triangles T; surrounding p;. This is, in fact,
what the quadric error metric does [16].

Initially we compute the error quadric E; for each original vertex p;
according to (3) by summing over all triangles which are directly adjacent
to p;. Since we are interested in the average squared distance, E; has to
be normalized by dividing through the valence of p;. Then, whenever the
edge between two vertices p and q is collapsed, the error quadric for the new
vertex r is found by E, = (E, + E,)/2.

The quadric error metric is evaluated by computing E;(p;). Hence when
collapsing p and q into r, the optimal position for r is given by the solution
of (4). Notice that due to the averaging step the quadric error metric neither
gives a strict upper nor a strict lower bound on the true geometric error.

Finally, the most expensive but also the sharpest distance error esti-
mate is the Hausdorff-distance [36]. This distance measure is defined to be
the maximum minimum distance; i.e., if we have two sets A and B, then
H(A, B) is found by computing the minimum distance d(p, B) for each point
P € A and then taking the maximum of those values. Note that in gen-
eral, H(A, B) # H(B, A) and hence the symmetric Hausdorff-distance is the
maximum of both values.

If we assume that the vertices of the original mesh represent sample points
measured on some original geometry, then the faces have been generated by
some triangulation pre-process and should be considered as piecewise linear
approximations to the original shape. From this point of view, the correct
error estimate for the decimated mesh would be the one-sided Hausdorfi-
distance H(A, B) from the original sample points A to the decimated mesh
B.

To efficiently compute the Hausdorff-distance we have to keep track of the
assignment of original vertices to the triangles of the decimated mesh. When-
ever an edge collapse operation is performed, the removed vertices p and q
(or p alone in the case of a half-edge collapse) are assigned to the nearest
triangle in a local vicinity. In addition, since the edge collapse changes the
shape of the adjacent triangles, the data points that previously have been as-
signed to these triangles must be re-distributed. Consequently, every triangle
T; of the decimated mesh at any time maintains a list of original vertices be-
longing to the currently associated patch S;. The Hausdorff-distance is then
evaluated by finding the most distant point in this list.

A special technique for exact distance computation is suggested in [9],
where two offset surfaces to the original mesh are computed to bound the
space where the decimated mesh should remain.

Simplification and Compression 13

Fairness criteria The distance measures can be used to decide which re-
moval operation among the candidates is legal and which is not (because
it violates the global error threshold ¢). In an incremental mesh decimation
scheme we have to provide an additional criterion which ranks all the legal
removal operations. This criterion determines the ordering of the candidates
in the heap.

One straightforward solution is to use the distance measure for the order-
ing as well. This implies that in the next step the decimation algorithm will
always remove that vertex that increases the approximation error the least.
While this is a reasonable heuristic in general, we can use other criteria to
optimize the resulting mesh for special application dependent requirements.

For example, we might prefer triangle meshes with faces that are as close
as possible to equilateral. In this case we can measure the quality of a vertex
removal operation, e.g., by the longest edge to inner circle radius ratio of the
triangles after the removal.

If we prefer visually smooth meshes, we can use the maximum or average
normal jump between adjacent triangles after the removal as a sorting crite-
rion. Other criteria might include color deviation or texture distortion if the
input data does not consist of pure geometry but also has color and texture
attributes attached [8,10,17,27,47].

All these different criteria for sorting vertex removal operations are called
fairness criteria since they rate the quality of the mesh beyond the mere
approximation tolerance. If we keep the fairness criterion separate from the
other modules in an implementation of incremental mesh decimation, we
can adapt the algorithm to arbitrary user requirement by simply exchanging
that one procedure. This gives rise to a flexible tool-box for building custom
tailored mesh decimation schemes [37].

2.5 Resampling

While vertex clustering and incremental decimation distill the set of original
vertices to obtain the vertices of the decimated mesh, resampling techniques
distribute new surface samples on the faces of the input mesh. These new sam-
ples are triangulated to form the decimated mesh while all original vertices
are removed. The advantage of resampling techniques is that the strategy to
place the new samples can adapt the local vertex density to user specified
requirements. A disadvantage is that alias errors can occur in the vicinity of
sharp features (as is the case with any discrete sampling scheme).

Classical resampling schemes run over all faces of the given mesh and
place a new sample with a probability that is proportional to the area of
the face or to some curvature dependent measure [61]. Since the number of
triangles is approximately twice the number of vertices in the original mesh
and since we want to reduce the mesh complexity, the resampling is very
likely to place at most one new sample in each original face.

14 Gotsman, Gumhold, Kobbelt

TAEYN, N

4 "!%’\\(Z‘gwk%’ 7

= N

RNNEASITK

sy B

A
(RS e | TS
R z

REXINY
AN
y‘éﬁgé

DX 7 RS

Fig. 4. Different fairness criteria can optimize the decimated mesh with respect to
the shape of the individual triangles (left) or with respect to the overall smoothness
of surface (right).

The new samples can be integrated into the given mesh by 1-to-3 splits
of the corresponding triangles. This leads to a meta-mesh that contains the
original vertices as well as the new samples. In a second step we can now
eliminate all original vertices by vertex deletion or edge collapsing such that
we end up with a decimated mesh that consists of the new samples only
(which lie on the original surface).

The quality of the resampled mesh can be improved if the new samples
are not placed independently from each other. Samples in neighboring or
nearby faces of the original mesh should be distributed evenly. One way to
achieve this is to shift the samples within the surface like particles that follow
attraction and repulsion forces. Obviously, this re-distribution of the sample
points has to be done before the samples are topologically inserted into the
mesh.

Another motivation for resampling techniques is to increase the regularity
of the mesh connectivity. In a regular triangle mesh, every vertex has exactly
valence 6 but it is well-known that we cannot find a globally regular mesh
for surfaces that are not homeomorphic to (a part of) the torus. Increasing
the regularity therefore means reducing the number of mesh vertices with
valence # 6.

Simplification and Compression 15

One important class of meshes are those with semi-regular connectivity.
In this case the mesh is made out of large triangular patches with regular
connectivity. In between these patches we have a small number of isolated
extraordinary vertices with valence # 6.

There are several algorithms to convert an arbitrary input mesh into
one with semi-regular connectivity by resampling [14,23,42,39]. The generic
structure of such algorithms is the following: first, a small set of base points
is distributed over the surface. These base points can be generated by a
random process or they can emerge from an incremental decimation scheme.
Those base points are then connected by geodesic curves. The collection of all
geodesics between base points splits the input mesh into a set of triangular
patches.

For each patch, a parameterization over a unit triangle is computed. To
minimize distortion, harmonic parameterizations are preferred [15]. One way
to think of harmonic parameterizations is to consider the mesh as a mass-
spring-system: each edge of the original mesh is replaced by a spring with
the remainder of the length proportional to the actual length of the edge.
To find the parameter values for each vertex of the triangular patch we fix
the boundary vertices of that patch on the boundary of the unit triangle.
Spring-energy minimization will find an equilibrium state that corresponds
to a planar triangulation of the unit triangle. By this, we assign a parameter
value to each vertex of the triangular patch.

The actual resampling is now performed by evaluating the parameteri-
zation on a uniform grid within the unit triangle. The resulting samples on
the surface can be connected trivially to a regular patch. The collection of
all these regular patches provide a piecewise regular resample of the original
mesh. This process is sometimes called remeshing.

ave
R
GO
iy
52
3
]
&

£
Ty
e
=
AN
AN
g

i

o

e
ases

i

ﬂ%'%
e
o
= EVAVAYY
o
et
TS
=S
o

X
awass

4.

s

e
=

=

=

=

e

Fig. . Resampling techni ues are able to impose a semi-regular structure on the
resulting mesh.

16 Gotsman, Gumhold, Kobbelt

onnecti it odin

In this section we describe how the face vertex incidence table of a mesh
can be encoded efficiently. If the table is encoded by a list of vertex indices,
the connectivity of a triangle mesh with f triangles and v vertices consumes
3 [log, v] = 6v [log, v] bits, i.e. 6 [log, v] bits per vertex (bpv). For a mesh
with 10,000 vertices this results in 6 14 = 84 bpv, which is of the order of
the geometry data.

The connectivity graph of typical polygonal meshes is well behaved in
the sense that the maximum number of faces around a vertex as well as the
maximum number of vertices in a face is limited by a small constant and that
the graph is nearly planar. Furthermore, most applications do not rely on a
special order of vertices nor faces but only need to know the structure of the
connectivity graph. This means that no damage is caused if a connectivity
compression scheme rearranges the vertices and faces into the order in which
it encounters the mesh elements during some deterministic traversal of the
connectivity graph. For planar graphs Tutte [62] enumerated all the different
structures that a connectivity graph can assume, showing that in the case of
triangular graphs, the encoding consumes at least log, 22— ~ 3.245 bpv, i.e.
the entropy of the connectivity graph is 3.245 bpv. On the other hand, this
raises the hope that there is a coding scheme consuming a constant number
of bits per vertex, at least for planar graphs. Turan [60] was the first to report
such a coding scheme. As meshes of genus zero, i.e. topological equivalent to
a sphere, are planar graphs and as the genus of most encountered meshes is
typically small, we can build on this result.

The first attempt to code non-planar triangular meshes was made by
Deering [13] and improved by Chow [5], who accelerated the data transfer
from the CPU to a special purpose graphics accelerator that implemented the
decoding algorithm. Later, Taubin and Rossignac [57] aimed for maximum
compression of triangular meshes with a combined method for connectiv-
ity and geometry coding. The mesh connectivity coding part is similar to
Turan’s method but works for arbitrary triangle meshes. In the case when
a mesh is non-planar and also non-manifold, the mesh can be cut at non-
manifold regions by duplicating some of the mesh elements. Rossignac and
Cardoze [52] attempt to minimize the number of mesh element replications.
Gueziec and Taubin [19] show how to encode the non-manifold part of the
incidence relations explicitly.

In this section we focus on recent connectivity coding methods for mani-
fold meshes that grow a region over the mesh and incrementally encode the
mesh elements and their incidence relation to the growing region. The meth-
ods can be categorized as face based, edge based and vertex based meth-
ods according to the type of mesh element playing the dominant role in
the compression scheme. The Cut-Border Machine proposed by Gumhold
and Strasser [20] and Rossignac’s Edge Breaker [51] are face based coding
schemes, the Face Fixer of Isenburg et al. [30] is edge based and the triangle

Simplification and Compression 17

mesh compression technique of Gotsman and Touma [59] is vertex based.
Before we discuss these methods in detail we describe a common framework.

3.1 asics o Connectivit Coding

The gro ing region is the collection of faces that have been processed by the
connectivity coding method. The remaining faces are said to be untouched.
An edge or vertex is called processed, iff all incident faces have been processed.
Vertices and edges not yet processed are called active, iff at least one incident
face has been processed. The collection of all active edges and vertices forms
the cut-border that separates the processed faces from those not yet processed.
Similar to untouched faces, non-processed vertices and edges are said to be
untouched. During the growing process only untouched faces incident to the
cut-border are processed. The active edge incident to the next treated face
is called the gate. The gate is an oriented edges and points to the pivot
vertex, whose neighborhood is encoded next. The untouched face incident
to the gate is called the current face. The gro ing operations are described
by command symbols and define the type of the current face, the incidence
relation to the cut-border and/or further attributes of non-active edges and
vertices incident to the current face. To begin coding a mesh, the growing

(b)

Fig. . Special situations during region growing a) split b) merge

region is initialized to a face whose surrounding edges become the initial cut-
border. In the case of a mesh with border one can assign a virtual face to
each border loop. These virtual border faces can also be used to initialize
the cut-border. Figure 6 shows two special situations with which any of the
coding methods must deal. The split situation in Figure 6 (a) arises when
the cut-border grows into itself. The current cut-border loop is split into two
loops. The light dashed line shows the cut-border before the split and the
black dash-dotted line the cut-border after the split. Coding proceeds with
one of the loops, which finally closes with an end situation, where only one
last face or edge is left in the current loop that vanishes after the last element
has been encoded. The cut-border loops produced by splits are handled with
a loop stac that stores a loop with pivot and gate location in each entry.

18 Gotsman, Gumhold, Kobbelt

After each split situation one of the resulting cut-border loops is pushed onto
the stack together with its gate and pivot locations. This loop is popped
from the loop stack after the end situation that terminates coding of the
other loop.

The merge situation as depicted in Figure 6 (b) arises once per handle.
Here two loops of the cut-border grow into each other and are merged to one
loop. The basic algorithmic scheme for all region growing coding methods
proceeds as follows

build a data structure with efficient access to incidences and adjacencies
reconstruct mesh border loops

initialize the cut-border to a border loop or to a face and define a pivot
and gate location

e repeat

analyze incidences and determine next growing operation

in case of split, push one loop on the stack and proceed with other
in case of end, pop loop from loop stack or terminate if loop stack is
empty

in case of merge, extract second loop from stack and merge it to
current loop

in all cases, add new mesh elements, update incidences and choose
new gate location and if necessary new pivot vertex

3.2 Connectivit Coding Methods

ace- ased Coding techniques define growing operations that, on the one
hand, specify the size of the face incorporated at the gate, and on the other
hand, the incidence relation between the face and the cut-border. The Cut-
Border Machine [20] and the Edge Breaker [51] methods each describe a set of
growing operations for the special case of pure triangular meshes. As all faces
are triangles, only the different incidences of the faces need to be specified,
as illustrated in Figure 7. We unify the notations and basic ideas of both
methods but also explain the main differences.

Both methods in the preprocessing stage determine all border loops of
the model and initialize the cut-border to one of the border loops. If the
model has no single border loop, the cut-border is initialized to the edge loop
of an arbitrary triangle. The pivot vertex is chosen arbitrarily on the initial
cut-border loop and the gate is set to the edge pointing to the pivot vertex.
During the actual coding phase, the incidence relation of the current face
with the cut-border is determined by a mesh data structure of choice that
allows for constant time query of the incidences. Each incidence is encoded
by a symbol together with parameters that give all information needed by
the decoding process.

Figure 7 illustrates the different growing operations. The legend at the end
defines the appearance of untouched, active and processed faces and vertices

Simplification and Compression 19

Fig. . ace-Based update operations for the triangular case

and of the gate and cut-border before and after the operation. The pivot
vertex is always the one to which the gate points.

(a)

(b)

The operation adds a new triangle to the growing region that
is incident only to the old gate. A new active vertex is introduced. After
the center operation the new gate is chosen such that it points to the
pivot vertex.

In the operation the current face is incident to the gate and
the next edge on the cut-border. The neighborhood of the pivot vertex is
closed and a new pivot vertex with a new gate is chosen on the cut-border.
In the operation the current face is incident to the gate and the
previous edge on the cut-border. The neighborhood of the start vertex of
the gate is closed and the pivot vertex is preserved.

In the operation all edges of the current face are incident to the
cut-border. After the end operation the current cut-border loop vanishes.
Coding terminates, if the loop stack is empty, or continues with the top
loop, gate and pivot vertex from the stack.

The operation ; handles the split situation in Figure 6 (a), where
the cut-border grows into itself such that the current triangle touches the

20 Gotsman, Gumhold, Kobbelt

th

so called split vertex, which is the i*"' vertex after the pivot vertex on the

current cut-border loop. If i is negative, it defines the (i + l)th vertex
before the pivot vertex. i is called the split index. The left resulting loop
is pushed onto the loop stack together with the left edge of the current
face as gate and the split vertex as pivot vertex. Coding goes on with the
right loop at the gate, pointing to the previous pivot vertex.

(f) The operation merges the current cut-border with a border
loop. The index specifies length of the loop, which needs to be known by
the decoder, and is encoded in addition to the operation symbol H. Before
the hole operation the border loop is rotated such that the operation
always connects to the first vertex of the border loop.

(g) The operation i encodes the merge situation in Figure 6 (b)
and merges the current cut-border loop at the merge vertez with a second
loop somewhere inside the loop stack. The index s specifies the location
of the second loop in the loop stack and i is the location of the merge
vertex in the second loop relative to the pivot vertex.

The Cut-Border Machine coding method encodes and decodes the connectiv-
ity in exactly the same way and exploits the knowledge about the length of
the current cut-border loop. It defines an alphabet of the symbols C,R,L,H.M
and for each indexi = 2, 3,...asymbolS;. The end symbol is not needed
as it can only arise when the current cut-border loop is of length three. In this
case no split operation can arise and the left, right and end operations lead
to the same result, such that the end operation can be encoded through an L
or R. The indices necessary for the hole and merge operations are encoded in
addition to the symbols. The Cut-Border Machine permutes the vertices of
the mesh in the order in which the vertices are introduced by C operations.
The triangles are permuted in the order in which they are introduced by
any of the symbols. In the decoding stage all encoded operations are simply
replayed and the connectivity is built up triangle by triangle.

The Edge Breaker method does not encode the split indices. This is pos-
sible if the end operation is explicitly coded with an E symbol. If we assume
that there are no merge or hole operations, the split indices can be recon-
structed in the following way. The symbols following a split operation describe
the right loop, which is terminated with an end operation. As there can be
further splits inside the right loop, one has to jump over all nested pairs of
S and E symbols when looking for the E symbol of the current S. An always
positive split index can be reconstructed from the length of the right loop
minus one. In order to determine the length of the right loop we examine the
influence of the different operations on the loop length. L and R decrement
the current loop length by one, C and S increment it by one and E decre-
ments it by three. Thus we just have to count the number of each type of
symbol after the current S up to and including the corresponding E and the
split index computestoi =# +# —# —# +3# -1

Simplification and Compression 21

A simple approach [29] to decode the operation symbols without the split
indices, which also handles merge and hole operations, is to decode in reverse
order starting with the final E symbol at the end of the symbol sequence. It
is possible to reverse all the operations in Figure 7. The untouched triangles
become the processed triangles and vice versa. The old gate and cut-border
become the new gate and cut-border and vice versa. Processed and untouched
vertices exchange their meaning and active vertices are still active. Let us now
describe the reverse decoding process and examine what needs to be known
to decode the inverse operations.

The inverse E operation decodes a face that defines a new cut-border loop,
gate and pivot location. The current cut-border loop and gate (if any) are
pushed onto the loop stack. The indices of the three newly introduced active
vertex indices of the decoded face are not finalized yet and are set to dummy
indices. The inverse R and L operations introduce one more active vertex.
The inverse S operation pops a cut-border loop from the stack and merges
it with a triangle connecting the two gates. No split index is necessary to
encode the split operation The two active vertices that represent the split
vertex in each loop are identified. This is the reason why newly introduced
active vertices are not final and have dummy indices. The dummy indices
can be finalized after the neighborhood of the vertex has been closed, i.e.
whenever a vertex changes its state from active to processed. This happens
after an inverse C operation, after which the vertex whose neighborhood
closes receives the next higher final vertex index. In this way the vertices are
enumerated in reverse order compared to the Cut-Border Machine encoding.
Therefore, also the vertices are decoded in reverse order.

The inverse hole operation H splits a mesh border loop off the current
cut-border loop by connecting the gate to a second edge on the current loop.
The location of the second edge can be determined from the length of the
border loop, such that the Edge Breaker scheme encodes H in the same way
as the Cut-Border Machine. Finally, the inverse merge operation M ; splits
the current loop into two and inserts one loop into the stack at location s
exactly where it was during encoding. The gate and pivot location of the loop
on the stack is given by i. But for reverse decoding of the merge operation
also, the length of the loop that is put on the stack, needs to be known and
the symbol M and the indices s, i and are encoded for each merge operation.

Figure 8 illustrates the face based coding and the reverse decoding on
a simple example. The cut-border is initialized to the border loop (a). Two
C operations introduce the first two interior vertices (b) and (c). Then the
neighborhood of the bottom right vertex is closed with a R operation (d).
The vertex becomes processed. Two further R operations (e,f) and two C op-
erations (g,h) follow. The S operation (i) splits the cut-border into two loops.
The Cut-Border Machine encodes the symbol So. One loop together with the
location of its gate (drawn dashed) is pushed onto the stack. Figure 8 (i’) il-

22 Gotsman, Gumhold, Kobbelt

(@) (b) (©) (d)
® @ (h) @

@ (k) o (m) (n)

Fig. . Example of face based connectivity coding

«~E—>

~C—

lustrates the reverse decoding, which we will return to later. An E operation
closes the first loop (j). The loop pushed earlier is popped from the stack
together with its gate location. A C (k) and two R (l,m) operations follow
before a second E operation closes the last cut-border loop and terminates
the encoding process (n). The resulting code string is CCRRRCCSECRRE.

The Cut-Border Machine decoding simply replays Figure 8 (a-n). The
reverse Edge Breaker decoding starts with the inverse E operation (m). The
black vertices and gray triangles are the not yet decoded mesh elements. The
following two inverse R operations (Lk) decode two triangles and introduce
two more active vertices with dummy indices. The C operation (j) completely
decodes the neighborhood of the vertex in the middle and its vertex index
is finalized. Figure 8 (i’) illustrates how the E operation introduces a second
cut-border loop, while the active one is pushed onto the loop stack. At this
point we do not know that one of the active vertices in the new cut-border
loop is the same as the bottom-most vertex in the pushed loop, illustrated by
duplicating the vertex. The following inverse S operation (h) unites the two
copies of the same vertex. The remaining sequence of C and R operations
(g—a) decodes the remaining triangles. The cut-border loop left at the end of
the decoding process defines the mesh border.

The operation symbol string of simple meshes is free of H and M opera-
tions. Closed triangle meshes satisfy f = 2(v — x) and meshes with border
satisfy f 2(v — x). Thus in the case of a simple mesh, v f/2+ 2. As the
center operation is the only operation that introduces new vertices, at least
every second operation must be a C. If the C operation is encoded with a one

Simplification and Compression 23

bit code and the four remaining operations each with a three bit code, a sim-
ple mesh is encoded with v bits for the C operations and 3(f —v) 3(v—4)
bits for the other operations which results in less than four bits per vertex
on the average.

Gotsman and Kronrod [41] generalize the Edge Breaker to arbitrary polyg-
onal meshes. The case of pure quadrilateral meshes can be encoded with 3.5
bpv and the case of quadrilateral meshes with a minority of triangles in 4
bits per face.

Edge- ased Coding defines two types of update operations. The first type
attaches faces and other edge loops to the current cut-border at the gate.
The adjacency of the new face or border loop is only defined at the gate.
The adjacencies of the other newly introduced active edges are specified sep-
arately with gluing operations. Each gluing operation identifies two active
edges and therefore specifies the adjacency of their incident faces. Isenburg
et al. proposed a method for polygonal meshes [30] called Face Fixer. The
following operations are introduced:

The face operation F attaches a face with edges to the current cut-
border loop. Similarly, the hole operation H creates a border loop with
edges and is handled exactly as in the case of face based coding. The gluing
operations of Face Fixer resemble corresponding face based operations. The
right operation R identifies the gate edge with the next edge on the cut-
border. In the triangular case the face based R operation is equivalent to a
F3 followed by a R operation. The left operation L identifies the gate with
the previous edge on the cut-border. The split operation S identifies the gate
with another edge on the cut-border splitting the current loop into two loops.
Decoding is performed in reverse, which us allows to avoid any additional
parameters for the split operation without further computations. The merge
operation M ; handling the situation of Figure 6 (b) connects the gate with
an edge on a different cut-border loop merging the two loops. For reverse
decoding the location s of the second loop on the loop stack, the location of
the gate in the second loop and the length of the second loop i is encoded.

Figure 9 illustrates the Face Fixer encoding and decoding on a polygonal
mesh with border. To encode the mesh, the cut-border is initialized to the
border loop of the mesh (a). The gate edge is marked inside the growing re-
gion to better visualize the reverse decoding. The first F3 operation (b) adds
a triangle to the growing region. The gate cycles around the vertex to which
it points. Next a quadrilateral is incident to the gate. In (c) the incidence of
the left quadrilateral edge to the cut-border is not specified yet, as illustrated
by the cut open edge. The L operation (d) specifies this incidence, closing the
edge. Further operations are applied introducing faces and gluing edges to-
gether until only one cut open edge is left in (n), which is closed with the final
E operation (0) yielding the code string F3F LF3;F LF;LF LLF LLF;LE.

Reverse decoding starts without any knowledge in (0). The inverse E
operation (n) generates a cut open edge with a gate location. The inverse

24 Gotsman, Gumhold, Kobbelt

o Fp “Fp “L- “Fp “FL
(@) (b) (c) (d) (e)

- <—F3|_—> <—F5—> ’/<—|_|_—> <—F4—> «—L
® @ (h) 0] 0]
(k) 0] (m) (n) (0)

Fig. . Example of edge based connectivity coding

L operation (m) adds another open edge before the inverse F3 operation (1)
generates a triangle. Two L operations (k,j) and a F operation (i) attach a
quadrilateral to one edge of the triangle. Another two L operations (h) and a
F operation (g) attach a pentagon to two of the previous cut-border edges.
Decoding continues until only the initial border loop remains.

ertex- ased Coding encodes the vertex valences in order to exploit this in-
formation later on. Vertex-based coding was developed by Touma and Gots-
man [59] for the special case of triangular meshes. In the beginning all border
loops are closed with a triangle fan around an additional dummy vertex; see
Figure 10 (o) for clarity. For each newly introduced vertex its valence, i.e. the
number of incident edges in the final mesh, is encoded. During encoding and
decoding one keeps track of the number of untouched edges for each vertex
on the cut-border not contained in the growing region. These edges are called
free edges. Anytime an active vertex has no more free edges, its neighborhood
can be closed with the last triangle. This happens every time when in face
based coding a L,R or E operation is performed. Thus the information about
the vertex valences can be exploited to avoid the explicit encoding of all L,R
and E operations.

We are left with three mesh growing operations. The add operation A;
introduces a vertex of valence . It is used at the beginning to specify the
three vertices of the triangle initializing the cut-border and in each situation
that corresponds to a C operation of Edge Breaker. After an add operation

Simplification and Compression 25

the gate is chosen as in face based coding such that it cycles around the pivot
vertex and closes its neighborhood first. Anytime a R, L or E operation arises
in face based coding, at least one of the affected vertices on the cut-border
has no more free edges. In this case the neighborhood of this vertex can
be closed without encoding any operation symbol. After the neighborhood
of the current pivot vertex has been closed, the new pivot vertex is chosen
as the next vertex along the cut-border. For the split operation S; the split
index ¢ is encoded such that the encoding and decoding process is done in
forward direction. The trick with reverse decoding is not applicable as no E
operations are encoded. No H operation is needed as all the border loops have
been tessellated. The dummy vertices are marked as holes with a negative
sign or their location in the code string is encoded. The merge operation M ;
takes two integer parameters specifying the location of the second cut-border
loop in the stack and an index into the free edges of this loop.

In [1] Alliez and Desbrun describe a strategy to reduce the number of
S operations in the valence-based scheme. They propose to choose the next
pivot vertex based on the information about the number of free edges on
the entire cut-border. They choose the vertex with the smallest number of
free edges as these vertices are less likely to produce an S operation in their
neighborhood. If there is more than one potential pivot vertex they compute a
mean number of free edges considering also the left and right neighbors along
the cut-border. This strategy for pivot vertex selection reduces the number
of S operations by about 70

0 m) ©)

Fig.1 . Example of vertex based connectivity coding

26 Gotsman, Gumhold, Kobbelt

Figure 10 illustrates the vertex-based coding on an example. The tes-
sellation of the border loop with a dummy vertex is done in advance but
only shown in (0). This increases the valence of the border vertices by one.
Coding starts with an arbitrary triangle and the specification of the valences
of the three incident vertices, in the example 4,6 and 7. The free edges for
each vertex on the cut-border are illustrated as bold short arms in the fig-
ure. From (a) to (b) an A operation introduces a vertex of valence 4. Three
further A operations (c—e) specify vertices of valence 7,4 and 5, where one
free edge points to the dummy vertex of the border loop. In (e) the vertex
in the middle has no more free edges. Thus we can immediately close the
neighborhood of the vertex. Two A operations (g,h) follow, introducing ver-
tices with valence 4. The S symbol (i) denotes a split operation and the
number of free edges 5 skipped along the current cut-border loop, i.e. five of
the bold short arms have to be skipped until the free edge is found to which
the pivot vertex is connected. The outer cut-border loop together with its
gate location is pushed onto a stack. An A operation (j) specifies the last
vertex of valence 4. The vertex pointed to by the gate has no more free edges
and its neighborhood can be closed. In (k) the neighborhood of the next
vertex without any more free edges is closed, and from (1) to (m) the cur-
rent cut-border loop vanishes by closing the neighborhoods of the last three
loop vertices. The previously pushed cut-border loop is retrieved and an A
operation introduces the dummy vertex of valence 5 that represents the bor-
der loop of the mesh. Till (o) the neighborhoods of the remaining vertices
on the cut-border are closed. The complete code representing the connec-
tivity of the meshis A A A AAAAASAA . The decoding process
replays the coding process and builds up the target data structure for the
mesh connectivity.

3.3 Comparison and Discussion

All of the region-growing connectivity coding methods described in Section
3.2 may be implemented very efficiently. For simple meshes the coding and
decoding time is linear in the number of mesh elements, as each growing
operation can be implemented in constant time. The merge operation is an
exception, but it does not appear in simple meshes and is rare in other mod-
els. Gumhold and Stra er [20] report compression speeds of half a million
triangles per second on a SGI 02/R10000 with 175MHz.

Gumbhold and Stra er [20] describe an update operation that reorients half
of a border loop in order to handle non orientable meshes. This operation can
easily be added to all other methods. Hole loops are encoded differently. In
reverse decoding methods such as the Edge Breaker or Face Fixer, hole loops
are incorporated to the current cut-border loop when the cut-border touches
the hole for the first time. A symbol with the hole loop length as parameter
is used for encoding. The vertex based method adds dummy vertices to close
the hole loops. The valence of the dummy vertex is encoded with a minus

Simplification and Compression 27

sign, which is equivalent to encoding a symbol and the length of the hole
loop.

Tutte showed that for planar triangulations, and therefore for simple tri-
angular meshes, at least 3.245 bits per vertex (bpv) are necessary on the
average (over all possible mesh connectivities) for connectivity coding. We
already showed that the Edge Breaker coding scheme encodes simple meshes
with no more than 4 bpv. This result was improved to 3.67 bpv by King and
Rossignac [34] and to 3.552 bpv by Gumbhold [21]. For real-world 3D mesh
connectivities, better compression ratios may be achieved (since the symbols
in the resulting sequences have further dependencies). Many models exhibit
regularity in the form of a large fraction of valence six vertices. Szymczak
and King [56] showed that triangle meshes with more than 85 valence six
vertices can be encoded in 1.85 bpv. Alliez and Desbrun [1] show that the
entropy of the vertex valences corresponds to the lower bound of 3.245 bpv
derived by Tutte. Thus for meshes with a negligible number of S operations,
an arithmetic coder combined with a valence coder can generate a code whose
length is very close to the theoretical lower bound. Regular triangle meshes
with a large fraction of valence 6 vertices can be compressed with 2 bpv and
less using valence coding. King et al. [35] generalize the Edge Breaker coding
scheme for pure quadrilateral connectivities and prove that in the worst case
no more than 2.75 bpv are consumed. Kronrod and Gotsman [41] generalize
the Edge Breaker coding to polygonal meshes and give a worst case coding for
quadrilateral meshes including a few triangles with less than 4 bits per face.
The Face Fixer encodes general polygonal meshes to 2 — 3 bpv on average.

3.4 rogressive Connectivit Coding

Progressive representations as introduced in the previous section represent
models starting from a coarse base model — the so-called base mesh — as a
sequence of vertex split or vertex insertion operations. The connectivity of
the base mesh can be encoded with any of the coding techniques described
in Section 3.2. Thus work on the progressive coding of meshes concentrates
in the connectivity section on the efficient coding of vertex split and vertex
insertion operations. The vertex split operation is defined by a vertex in the
current connectivity — the split vertex — and the two incident split edges that
are extended to the two triangles incident to the edge collapsed during mesh
decimation. The vertex insertion is defined by the faces that were used during
decimation to re-tessellate the hole resulting from the vertex removal.

Hoppe’s [25] progressive meshes codes an arbitrary simplification process
based on edge collapse but consumes log, v bits to encode the index of each
split vertex plus an average of 5 bits to encode the two split edges. In [26]
Hoppe shows how to reorder the vertex split operations such that the indices
of the split vertices can be encoded with an average of 6 bpv.

Taubin et al. [58] propose to simplify models with a combination of sev-
eral edge collapses at the same time such that the inverse operation splits

28 Gotsman, Gumhold, Kobbelt

a complete forest of edges and vertices. This forest split operation can be
encoded with about 12 bpv. Pajarola and Rossignac [49] group vertex-split
operations into batches and specify split vertices by marking each vertex of
the current mesh using one bit, leading to a total of about 7 bpv. Cohen-Or et
al. [11] propose a progressive representation based on removal of independent
sets of mesh vertices. They encode groups of vertex insertions by coloring the
face patches in the coarse level with four or even two different colors only,
resulting in 6 bpv. Finally, Alliez and Desbrun [2] describe a similar vertex
insertion representation that primarily encodes the valences of the inserted
vertices. If pure topological simplification criteria are used the resulting code
consumes only about 4 bpv, which is close to that achievable by single reso-
lution methods.

om ression o eometric Data

4.1 Introduction

The previous sections dealt with the efficient coding of the connectivity com-
ponent of a 3D mesh, which has a discrete nature, essentially that of a graph.
The following sections will deal with the second component of the 3D mesh -
its geometry. The geometry manifests in 3D coordinate data - three real val-
ues per vertex. The first issue that must be addressed is the precision of this
data. Typical 3D polygonal datasets are generated by 3D scanning devices,
having finite precision, or as a result of a modeling process with an interactive
software tool. In both cases, the 24-bit precision that the data is given in is
usually far more than the actual information content of the data, and the
higher-precision bits are just "noise”. A standard technique employed at one
point or another in compressing numerical data is quantization. This means
that the total number of possibilities of the data vectors, say n, is reduced
significantly to a representative set of, say, k n vectors. This reduces the
range of the input dataset to a manageable size before the domain-specific
coding technique is applied. uantization, however, is irreversible, meaning
that it will be impossible to recover the original dataset once quantized, even
after decoding. Techniques such as this are called lossy techniques, because
some of the original data is lost. The more aggressive quantization is per-
formed, the more loss is incurred, and the more compact the data becomes.
An important question is how to optimize this tradeoff in order to minimize
loss and also data code length.

The 3D coordinate vectors associated with each vertex of a mesh are
not independent, hence collectively contain much less information than the
sum of the information content of each individual coordinate vector. This
is obviously true for smooth meshes, where there exists a strong correlation
between the values of the coordinates of vertices neighboring in the mesh.
As in most coding methods, this correlation may be exploited to minimize
redundancy. A simple rule-of-thumb (but not so easy to exploit - as we shall

Simplification and Compression 29

see later), is that the coordinates of a vertex in a smooth mesh are very
close to the simple average of the coordinates of its immediately neighboring
vertices. This is an example of a prediction rule, where the coordinates of a set
of vertices are used to predict the coordinates of a vertex v not in the set. In
this manner, if the code already enables the decoder to know the coordinate
values of the set of vertices, the prediction rule may be applied to compute
the as-yet unknown coordinates of v. Since this is only a (sometimes crude)
estimate of the true value, it cannot suffice to decode the value satisfactorily,
and a prediction error must be present in order to recover the correct value.
The prediction error is just the difference between the true value and the
predicted value, and is stored in the code. This type of coding is known as
predictive coding. The fundamental assumption behind predictive coding is
that the prediction errors are sharply concentrated about the origin, hence
possess a much smaller entropy that the original dataset.

Since the geometric coordinate data is associated with the mesh vertices,
which are connected to each other as dictated by the connectivity informa-
tion, this connectivity information plays an important role in the compres-
sion of the geometry, specifically in the prediction. It indicates which vertices
should be used to predict another, and in which order. At the decoder two
possibilities exist: decode the connectivity fully before starting to decode the
geometry, or decode the geometry in lock-step with the connectivity. The
advantage of the former is that the entire connectivity structure is available
when decoding the geometry, hence better predictions can possibly be made.
The advantage of the latter is a more efficient (in terms of run-time) decoding
algorithm.

4.2 uanti ation

Real numbers are traditionally represented in floating point format, i.e. with
a mantissa and exponent. A 32 bit representation can distinguish between
232 different values, which, in many cases, is far more than is needed for a
given application, and the same amount of information may be represented in
fewer bits. In many cases, the extra bits are ”wasted”, containing essentially
random values, which ironically, some users tend to believe has an information
content which must be preserved at all costs.

uantization is a subject that has been studied extensively. We shall
elaborate here only on those topics relevant to 3D mesh coding. The simplest
form of quantization is uniform quantization, where the domain of interest is
discretized onto a uniformly-spaced multidimensional grid structure. Given
a set of data vectors, each one of these is then ”snapped” to one of the grid
points, usually the closest one. Fig. 11a shows how a set of 20 two dimensional
vectors is quantized to a uniform 4x4 grid, hence requiring 4 bits per vector.
Note that since there are 20 input data vectors, but only 16 quantized vectors,
the mapping will not be bijective. In fact, as can be seen only 11 quantization
values are used, so many of these bits are wasted. However, the fact that there

30 Gotsman, Gumbhold, Kobbelt

are only 16 distinct output vectors means that each may be represented in 4
bits, instead of the high precision of the input vectors. Albeit, quantization
error has occurred in the transition, as, without additional information, the
originals cannot be recovered. Assuming n input vectors, = {vi,...,vn},
k quantization (vector) values @ = { 1,..., }, and a mapping

— (), the quantization error is usually measured using the 5 norm:

2

B0,)=3 v (@ 0

For uniform quantization, the size of the region to be quantized must be spec-
ified. Obviously, the smaller it is, the less quantization error will be incurred
for a given number of quantization levels. It would be wasteful to quantize
regions of the data domain in which there are no input data vectors. The
standard way to do this is to enclose the input data vectors in a multidi-
mensional bounding cube, which is as small as possible. For example, in three
dimensions, denote the length of each edge of the cube by , originating at
the point (o, o, o0)- Then the dimension of the cube is sampled at the k
locations { o, o+—, o+—21,"**, o+ }asarethe and dimensions.
Usually k is taken to be a power of two and then each quantized coordinate
may be expressed in k bits. Using a bounding cube is to be preferred over
a bounding boz, where the quantization interval in each dimension can be
different, depending on the spread of the coordinate, as then each quantiza-
tion cell is a cube, even though it might seem wasteful, since many of these
cubes will be void of data points. For uniform quantization, the mapping

independently associates with each coordinate the quantization value closest
to it. Once each dimension has been quantized to k3 values, each coordinate
of the vertex geometry vector may be represented as an integer in the range

{0,...,k — 1}. In order to recover the original quantized points, the code
must contain the parameters of the bounding box.

Uniform quantization is simple to understand and implement, but is not
optimal, since it takes into account only the length of the interval in which
the data points lie, but not the distribution of the points within the in-
terval. It would seem more reasonable to position more quantization vec-
tors in the regions where more of the data points lie, and hence reduce the
value of the quantization error in (5). This is possible, and is known as non-
uniform quantization. The simplest way to do this is on each dimension
separately, i.e. solve three independent one-dimensional optimization prob-

lems. The result is three sets of quantization values: { o, 1, 2,-.., 1},
{0 1, 20--5» 1} {0, 1, 2,--+, 1} The quantization vectors are the
cartesian product of these three sets, namely the set of = k® 3D vectors

{(i1y d29 i):O il,ig,i3 k—l}.

An even better way to reduce quantization error is to take into account
the joint distribution of the data vectors, namely, the correlation between
the three coordinates. The set of techniques which deals with this is known

Simplification and Compression 31

o O O @

vl |
ﬁ
7 o o ._gk

(a) (b)

Fig.11. uantization of a 20 point dataset(small blac circles) in two dimensions.
(a) Uniform uantization to 16 levels (large gray circles). Mapping is denoted by
lines. ote that only 11 of the 16 uantization levels are used.

(b) on-uniform uantization. our levels su ce to achieve a uantization error
comparable to (a).

i

collectively as wvector quantization (or V), and in general, good solutions
are computationally expensive. In its most general form, vector quantization
may be formulated as an optimization problem related to (5):

(,v):ag in E (’l),)7 (6)

so that both the representative set (and the mapping are unknowns. The
simplest solution for this problem is the classical Lloyd’s algorithm (some-
times also known at the LLB algorithm). This algorithm maintains the n
input vectors in dynamic disjoint sets (or clusters), where all vectors in a
set are mapped to the same representative. As the algorithm proceeds, both
the sets and their representative evolve until they converge to stable values.
Fig. 11b) shows the result of non-uniform quantization on the input vector
set of Fig. 11a). Four carefully chosen quantization vectors (2 bits) suffice to
quantize the input set with comparable quantization error. A description of
many V algorithms may be found in the classic book by Gersho and Grey
[18].

When quantizing 3D mesh geometry, artifacts may occur if care is not
exercised. One of the more common artifacts is the appearance of what seem
to be ”cracks” in the geometry. This is because in some models distinct
vertices may have almost identical geometries, meaning that for all practical
purposes they are located at the same position in space, possibly joining
separate components of the mesh. This is very frequent in models where entire
boundaries coincide. Since quantization in effect ”moves” vertices in space,
some vertices may move differently from others, and vertices which previously

32 Gotsman, Gumhold, Kobbelt

coincided may no longer do so, forming ”cracks” or ”overlaps”; see Fig. 12
for an example. To prevent this problem, care should be exercised to move all
(almost) coincident vertices together. This will usually happen automatically
if simple uniform quantization is employed on a common bounding box for
the entire model.

One way to guarantee that coincident vertices are quantized to the same
values is to perform a preprocessing stage in which these vertices are identi-
fied, and then treated together during quantization.

(a)
Fig.12. Crac s formed by uantizing two model components using separate
uniform uantization grids. (a) before uantization (b) after uantization

4.3 rediction Methods

Predictive coding is the standard entropy-reduction method for coding geom-
etry. It is based on the observation that there is some correlation between the
geometry of a vertex and that of its neighborhood, so if a specific prediction
rule is used, it suffices to code just the prediction error, namely the difference
between the actual vertex geometry value and its predicted value. Hopefully,
the entropy of the prediction error population will be much less than that of
the original vector population, and significant savings can result.

Practical prediction methods are local and causal, meaning that the ge-
ometry of a vertex is predicted from a small number of neighboring vertices
and in an order dictated by another process, usually the connectivity cod-
ing process. For example, using a vertex tree to code the connectivity, it is
possible to predict the geometry of a vertex using the geometries of all its
ancestors in the tree. Note that it is not possible to use the geometries of its
descendants, since these will not necessarily be available at the decoder at
the time when they are needed. The standard way to predict the geometry
of a vertex is as a linear combination of the geometry of a small number
of its ancestors in the tree. This is commonly called linear predictive coding
(LPC), and is widely used in audio compression. The simplest linear pre-
diction method is p(v;) = v; 1, meaning that the geometry of a vertex is

Simplification and Compression 33

predicted to be identical to that of its immediate ancestor, based on the un-
derlying assumption that the geometry function is constant and, in effect, the
difference between the two will be coded. A more sophisticated method is to
predict, based on the two previous ancestors, assuming the first derivative is
constant: v; —v; 1 = v; 1 — v; 2, or, in other words, p(v;) = 2v; 1 —v; ».
Higher order predictors may be used, where predicting based on the previous
k values involves assumptions on the first £ — 1 derivatives of the geometry
function. For k = 3, the assumption of a uniform second derivative leads to
the prediction rule: p(v;) = 3v; 1 — 3v; 2 +v; 3. In general the sum of the
prediction coeflicients will be one. These coefficients are data independent,
and, theoretically, at least, given a mesh with vertices {v; : ¢ =1,..,n} in a
prediction order, and integer k, it is possible to compute optimal prediction

coefficients aq,...,a , such that the average prediction error is minimal:
n 2
(a1,...,a)=a g in E vz-—E a;v; j
i= +1 j=1

This can be solved using the linear least squares minimization technique,
which involves computing the singular value decomposition (SVD) of a k k
matrix. These optimal coefficients and the first k& values of the sequence must
then be stored as part of the code. In practice, however, the additional benefit
from optimal coefficients is small, and k& = 3 is usually sufficient.

A form of the scalar LPC which better captures the spatial form of
the vertex geometries relies on the triangle structure of the mesh, so that
a vertex geometry may be predicted as a linear combination of other ver-
tices in its preceding neighborhood. A good predictor of this kind is the so-
called parallelogram predictor [59], which relies on the empirical observation
that two adjacent triangles in a triangle mesh tend to form a parallelogram,
hence the fourth vertex in such a structure may be predicted from the other
three: v = v3 4+ v3 — v1; see Fig. 13. Note that this implies that the four
vertices are co-planar, which is usually not true, but relatively close to real-
ity, especially for smooth meshes. Continuing this line of thought, it should

Fig.13. arallelogram predictor.

be possible to find other local patterns in the mesh geometry which adjacent

34 Gotsman, Gumhold, Kobbelt

triangles satisfy, e.g. triangles forming a fan. If no prior information exists
on the patterns in a mesh, it is possible to search for them as described by
Lee and Ko [43]. If a few such patterns dominate, it is possible to use them
all as predictors, provided that the identifier of the predictor used at each
vertex is specified in the code. The simplest way to do this is to insert an
index into the predictor set per each new vertex, or, assuming the predictors
appear in long runs, run-length encoding might be better. Fig. 14 shows a 3D
model and the distribution of the coordinate prediction errors obtained by
applying the parallelogram rule. There the geometry has been quantized to
10 bits/coordinate, hence 30 bits/vertex are required to specify the mesh ge-
ometry without any coding. The entropy of the prediction error distribution
is 15.15 bits/vertex, which is a significant saving realizable through Huffman
or arithmetic coding.

(a) (b)

Fig.14. redictive mesh geometry coding. (a) 3D triangle mesh uantized to 10
bits/coordinate. (b) Distribution of parallelogram prediction errors of the coordi-
nates with entropy of 5.05 bits/coordinate (or 15.15 bits/vertex).

4.4 pectral Methods

This section describes a different approach to coding mesh geometry, which
bears some similarity to transform coding used for image and other signal
compression.

Imagine we were to predict the geometry of each vertex to be the simple
average of all its neighbors in the connectivity graph and code just the pre-
diction error. Order the vertices in a vector fashion as three column vectors

, and , each containing one of the three vertex coordinates. The predic-
tion error —e— is also three column vectors € ,e& ,& . In this formulation,
the decoder would have to solve the following three n n systems of linear
equations in order to recover the mesh geometry:

— =&

Simplification and Compression 35

— =&
- =&, (7)

where is the adjacency matriz of the mesh connectivity:

~_ 1 dand are neighbors
“ 0 otherwise

and the diagonal matrix = diag(ds,..,d,) where d; is the degree (va-
lence) of the i’th vertex. If the system of equations is singular (which happens
if the mesh is closed), we require that the solutions , , have minimal norm,
or add various other constraints (such as “anchor points” in the mesh which
pin down some of the vertices).

Since the treatment of each of the coordinates is identical, we restrict
the discussion, without loss of generality, to the coordinate. The equation
is = ¢, where is a matrix derived from the connectivity graph: =

— . Solving this system for would cost O(n®) operations, which is
not practical for large meshes. On the other hand, it might be possible to
approximate well in far fewer operations. Let be the matrix whose rows
are the eigenvectors of | i.e. = FE , where F is a diagonal matrix of s
eigenvalues. Multiply each side of the equation by : = ¢, obtaining

FE = &.

This means that and ¢ are related through a simple relationship and
solving for given ¢ is very easy (as opposed to solving for given). This
indicates that transforming by is useful in (and, in a sense, equivalent to)
solving (7). Denote by .Now if contains a large number of negligible
entries, these may be taken as zero, and only the non-zero entries used as
the code instead of or € . The decoder, receiving the compact , can now

compute
T

which, in practice, requires O(kn) operations, where k is the number of non-
zero coeflicients of

This approaches has its roots in spectral graph theory. The matrix is
the well-known graph aplacian operator, and the diagonal entries of E the
graph spectrum. The matrix represents the spectral basis associated with
the connectivity graph, and the vector the spectral transform or spectral
coe cients of . Similarly to Fourier theory, the ”frequency” associated with
each spectral basis vector is the eigenvalue of the eigenvector. has at least
one vanishing eigenvalue, corresponding to the "DC” component of the co-
ordinates. Eigenvectors with larger eigenvalues represent basis vectors that
capture the detail in the geometry. The bulk of the spectrum of smooth ge-
ometries is concentrated on the basis vectors with the small eigenvalues. Fig.
15 shows the decay of the spectral coefficients of each of the 3 coordinate

36 Gotsman, Gumbhold, Kobbelt

coordinate coordinate

8

100 150 200 250 300

coordinate

(a) (b)

Fig.1 . Spectral mesh geometry coding. (a) The spectral coe cients of the 3
coordinate vectors of the mesh of ig 14a. ote the significant decay. (b) Mesh
reconstructed using only the first 25 of the coe cients (4.8 bits/vertex).

vectors of the mesh of Fig. 14. Entropy coding of the coefficients quantized
to 14 bits/coefficient results in a code containing 15.5 bits per vertex, com-
parable to coding using predictive methods. However, if we are willing to
compromise slightly on mesh quality, entropy coding of the first 25 of the
spectral coefficients yields a code of length 4.8 bits per vertex, which may be
decoded to the mesh of Fig. 15b). More details and examples may be found
in [31].

In practice, spectral mesh coding requires computation of the Laplacian
eigenbasis at both the encoder and decoder, requiring O(n®) computation at
both ends. Beyond this, the computation becomes unstable for large n, as the
conditioning of the linear system depends on the distance between adjacent
eigenvalues, and this tends to zero as n increases. Thus, spectral mesh coding
in its simple form is not practical for large meshes. Since is symmetric and
sparse, it is possible to use the relatively efficient Lanczos methods (see e.g.

Simplification and Compression 37

the LASO2 package [55]) to compute the first few eigenvectors). Each will
cost approximately O(n!), which is, nonetheless, still quite expensive.

One way to reduce the complexity is to partition the mesh into a number
of small submeshes of more manageable proportions. For k submeshes, this
will reduce the complexity to O(k(n/k)®) = O(n3/k?), but will introduce
artifacts in the submesh boundaries, or, in other words, reduce the efficiency
of the code in these regions.

A particularly efficient mesh partitioning algorithm is implemented in the
MeTiS software package [33], available on the Web. MeTiS partitions a given
graph into parts such that the partition is balanced, i.e. each part contains
approximately the same number of vertices, and the edge-cut is minimal,
namely, that the total number of edges straddling the parts is as small as
possible. A reasonable choice for the submesh size is approximately 500 ver-
tices. Note that the partitioning information must either be incorporated into
the mesh code, or the partitioner must be run at the decoder too, once the
mesh connectivity is decoded, in order to reconstruct this information. This
does not impose significant overhead, as MeTiS runs in time and space linear
in the size of the mesh.

Conventional geometry coding methods first quantize the geometry before
coding it in a lossless manner. This is possible because most of the predic-
tion methods applied later in the process may be formulated to operate on
integers. Since spectral methods do not involve prediction, rather the com-
putations of real coefficients, there is no point in quantizing the geometry so
early in the process. Instead, the spectral coeflicients are quantized before
transmission to a fixed number of bits.

It turns out that more precision is required for the spectral coefficients
than would have been required on the original geometry in order to achieve
similar distortion. If 10 bits/coordinate were used for the geometry, 14-16
bits/coefficient are needed for the spectral coefficients. Here too uniform
quantization is the easiest.

The spectral method described in the previous section can, in fact, be
used in a progressive manner. This can be achieved by transmitting the spec-
tral coefficients one at a time, and building up the mesh progressively as the
coefficients are received by adding in the appropriate basis function weighted
by the coefficient. Each such update to the model would require O(n) oper-
ations.

The key to effective spectral coding is to make sure the data does not con-
tain too many high frequencies. This is the case for relatively smooth models,
such as those generated by 3D scanners. However, there exist classes of 3D
models which are far from smooth. For example, models used in CAD/CAM
applications, describing mechanical parts and such, contain sharp edges and
corners. These manifest in high frequency content, and spectral coding is not
very efficient.

38 Gotsman, Gumbhold, Kobbelt

Spectral methods as described in the previous sections are not very prac-
tical, mainly because the eigenbasis of the connectivity mesh (or submeshes)
must be computed both at the encoder and at the decoder. The encoder is
less of a problem, as it can be run o ine, however, decoding is usually an
online process which is required to be very fast. Since the mesh connectiv-
ity is different for different meshes, there is no easy way to precompute the
eigenvectors at the decoder. For this reason, attempts have been made to use
a fixed connectivity structure for defining the spectral basis, and map any
other mesh connectivity encountered onto this. The simplest connectivity
structure for a triangle mesh is the regular triangle graph, where each vertex
has degree six. The eigenvectors of this graph are identical to those of the
regular grid graph (where each vertex has degree four) - the two-dimensional
Fourier basis - which is used in image coding. If the size of the mesh is a
power of two, spectral coeflicients on this basis can even be computed using
the famous Fast Fourier Transform (FFT) algorithm. The main problem, of
course, is - given a mesh with some connectivity graph - to find a mapping

— of the vertices of to the vertices of the regular triangle graph
such that the neighborhood relationships are preserved as much as possible.
The precise formulation of the problem is as follows:

=ag in Z dis ((i), ())—dis (i,)

i

where dis (i,) is the edge distance between vertices ¢ and in the graph
,and E() is the edge set of
This is, in general, a difficult problem, and we refer the reader to the
paper by Karni and Gotsman [32] for details on how to find an approximate
solution. It turns out that a reasonable mapping may be obtained such that
the resulting spectral compression using the regular basis yields compression
ratios not significantly worse than the optimal basis.

ercises

xercise 1 Connectivit Coding

(a) Run the face based, edge based and vertex based connectivity coding
algorithms described in Section 3.2 by hand on the mesh in Figure 16
and generate the code strings. For your convenience fill the next encoded
triangle and draw the new gate location after each operation. In case of
face based and edge based coding initialize the cut-border to the mesh
border and start with the marked gate location. For the valence-based
coding use the added dummy vertex, start the code with the two vertices
of the marked gate edge and perform an add operation to encode the
third vertex of the marked triangle first. In all three schemes make sure
to cycle the gate around the pivot vertex pointed to by the gate. After a

Simplification and Compression 39

>

Fig.1 . Sample mesh for connectivity coding

split operation proceed with the gate on the right side when the gate is
at the bottom.

(b) Compute the entropy of the code strings generated in (a). Which scheme
performs best

(c) Why is the entropy not a good performance measure for small meshes

xercise 2 ower ound or Valence ased Coding

The valence-based encoding scheme proposed by Alliez and Desbrun [1] avoids
most of the split operations. In this exercise we follow Alliez and Desbrun’s
ideas and compute the maximum entropy of the vertex valences of a trian-
gular mesh with spherical topology for a fixed number of vertices v. This is
a lower bound for valence-based coding with a context free backend. In case
of a negligible number of split operations and an arithmetic coding backend
one can achieve worst case results close to Tutte’s lower bound.

To maximize the entropy of a code string it should contain as many dif-
ferent symbols as possible and the count of each symbol should be about the
same. In our case the alphabet consists of the different valences 3,4,5,6,
Independent of the total number of symbols in the code string we want
to choose the frequencies ;,¢ = 3,4,... in a way that maximizes £ =
—vY ., 3pilog, p; under the constraint, and that all frequencies sum to one:
> i 3 i = 1. Besides this constraint we need to make sure that the valence
distribution is valid and obeys the Euler equation v + f = e + 2. A closed
triangular mesh satisfies 2e = 3f, as each edge is incident to two faces and
each face to three edges.

(a) Show that the average valence of a triangular mesh of spherical topology
is Y, 5 i-i=6—12 ~ 6. This is the second constraint under which we
want to maximize the entropy.

40 Gotsman, Gumhold, Kobbelt

(b) Show, that ; = -e ‘maximizes), , ;log, 1 under the constraints

Ez’ 3 ,~=1andzi 3 1126
int Use the method of Lagrange Multipliers.

. i ; 2 . ; 2 (324 2)

(c) With the equalities), ;e ‘= -—Fand) ;ie *'= 1
show that = é— and = log 3 yield a unique maximum and that the
entropy in this case is E = —log, + —5 = logy 3— ~ 3.245. This

is exactly the lower bound derived by Tutte through enumeration of all
possible triangulations.

€ erences

1. Alliez, ., Desbrun, M. (2001) alence-driven connectivity encoding for 3D
meshes. roc. of Eurographics Conf.

2. Alliez, ., Desbrun, M. (2001) rogressive compression for lossless transmission

of triangle meshes. roc. ACM Siggraph 01.

3. Baumgart, B. G. (1975) A polyhedron representation for computer vision. roc.
of the at. Comp. Conf., 589 596

4. Botsch, M., Kobbelt, . (2001) Resampling feature and blend regions in polyg-
onal meshes for surface anti-aliasing, Computer Graphics orum, C402 C410

5. Chow, M. (1997) ptimized geometry compression for realtime rendering. roc.
IEEE is. 97, 347-354

6. Cignoni, ., Montani, C., Scopigno R. (1998) A comparison of mesh simplifica-
tion algorithms, Computers Graphics, 37 54

7. Cignoni, ., Montani, C., Scopigno R. (1998) Metro: Measuring error on simpli-
fied surfaces, Computer Graphics orum, 167 174

8. Cignoni, ., Montani, C., Rocchini, C., Scopigno, R., Tarini, M. (1999) reserv-
ing attribute values on simplified meshes by re sampling detail textures, The

isual Computer, 519 539
9. Cohen, ., arshney, A., Manocha, D., Tur , G., Weber, H., Agarwal, ., Broo s,
., Wright, W. (1996) Simplification envelopes, roc. ACM Siggraph 96, 119 128

10. Cohen, ., lano, M., Manocha, D. (1998) Appearance preserving simplifica-
tion, roc. ACM Siggraph 98, 115 122

11. Cohen- r,D., evin,D.,Remez, .(1999) rogressive compression of arbitrary
triangle meshes. roc. IEEE is. 99, 67 72

12. Cormac ,G. ., Horspool,R. .(1984) Algorithms for adaptive Huffman codes.
Inform. roc. etters, 1 (3), 159 165

13. Deering, M. (1995) Geometry compression. roc. ACM Siggraph 95, 13 20

14. Ec , M., DeRose, T., Duchamp, T., Hoppe, H., ounsbery, M., Stuetzle, W.
(1995) Multiresolution analysis of arbitrary meshes, roc. ACM Siggraph 95,
173 182

15. loater, M. (1997) arameterization and smooth approximation of surface tri-
angulations, Comp. Aided Geom. Design, 14, 231 250

16. Garland, M., Hec bert, . (1997) Surface simplification using uadric error
metrics, roc. ACM Siggraph 97, 209 216

17. Garland, M., Hec bert, . (1998) Simplifying surfaces with color and texture
using uadric error metrics, roc. IEEE is. 98, 264 270

Simplification and Compression 41

18. Gersho, A. and Grey, R. (1992) ector uantization and signal compression,
Kluwer, Boston.

19. Gueziec, A., Taubin, G. et al. (1998). Converting sets of polygons to manifold
surfaces by cutting and stitching. roc. ACM Siggraph 98, 245 254

20. Gumbhold, S., Stra er, W. (1998) Real time compression of triangle mesh con-
nectivity. roc. ACM Siggraph 98, 133 140

21. Gumbhold, S. (2000) ew bounds on the encoding of planar triangulations. Tech.
Rep. WSI-2000-1, Univ. of Tiibingen

22. Gus ov, L., Sweldens, W., Schréoder, . (1999) Multiresolution signal processing
for meshes, roc. ACM Siggraph 99, 325 334

23. Gus ov, I, idimce, K., Sweldens, W., Schréder, . (2000) ormal meshes,

roc. ACM Siggraph 00, 95 102
24. Hoppe, H., DeRose, T., Duchamp, T., McDonald, ., Stuetzle, W. (1993) Mesh
ptimization, roc. ACM Siggraph 93, 19 26

25. Hoppe, H. (1996) rogressive Meshes. roc. ACM Siggraph 96, 99 108

26. Hoppe, H. (1998) E cient implementation of progressive meshes. Computers
and Graphics, 22.1 27 36

27. Hoppe, H. (1999) ew uadric metric for simplifying meshes with appearance
attributes, roc. IEEE is. 99, 59 66

28. Huffman, D. A. (1952) A method for the construction of minimum-redundancy
codes, roc. Inst. Radio Eng., 1098 1101

29. Isenburg, M., Snoeyin , . (2000) Spirale Reversi: Reverse decoding of The
EdgeBrea er encoding. 12th Can. Conf. on Comp. Geom., 247 256
30. Isenburg, M., Snoeyin , . (2000) ace ixer: Compressing polygon meshes

with properties. roc. ACM Siggraph 2000, 263 270

31. Karni, . and Gotsman, C. (2000) Spectral coding of mesh geometry. roc.
ACM Siggraph 00, 279 286.

32. Karni, . and Gotsman, C. (2001) 3D mesh compression using fixed spectral
bases. roc. Graph. Interf. 01, 1 8.

33. Karypis, G. and Kumar, . (1998) MeTiS: A software pac age for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing orderings
of sparse matrices. ersion 4.0, Univ. of Minnesota, Dept. of Computer Science.
Available at http://www-users.cs.umn.edu/ arypis/metis/metis.html

34. King, D., Rossignac, . (1999) Guaranteed 3.67v bit encoding of planar triangle
graphs. 11th Can. Conf. on Comp. Geom., 146 149

35. King, D., Rossignac, ., Szymcza , A. (1999) Connectivity compression for
irregular uadrilateral meshes. Tech. Rep. TR 99 36,G U, Georgia Tech

36. Klein, R., iebich, G., Stra er, W. (1996) Mesh reduction with error control,

roc. IEEE is. 96, 311 318

37. Kobbelt, ., Campagna, S., Seidel, H.- . (1998) A general framewor for mesh
decimation, roc. Graph. Interf. 98, 43 50

38. Kobbelt, ., Campagna, S., orsatz, ., Seidel, H.- . (1998) Interactive multi
resolution modeling on arbitrary meshes, roc. ACM Siggraph 98, 105 114

39. Kobbelt, ., orsatz, ., absi , U., Seidel, H.- . (1999) Shrin wrapping ap-
proach to remeshing polygonal surfaces, Computer Graphics orum, 119 130
40. Kobbelt, ., orsatz, ., Seidel, H.- . (1999) Multiresolution hierarchies on un-

structured triangle meshes, Computational Geometry: Theory and Applications
41. Kronrod, B., Gotsman, C. (2000) E cient coding of non-triangular meshes,

roc. acific Graphics, pages 235 242

42 Gotsman, Gumhold, Kobbelt

42. ee, A., Sweldens, W., Schréder, ., Cowsar, ., Dob in, D. (1998) MA S:
Multiresolution adaptive parameterization of surfaces, roc. ACM Siggraph 98,
95 104
43. ee, E. and Ko, H. (2000) ertex data compression for triangular meshes. roc.
acific Graphics, 225 234.
44. indstrém, ., Tur , G. (1998) ast and memory e cient polygonal simplifica-
tion roc. IEEE is. 98, 279 286
45. indstrom, ., Tur , G. (1999) Evaluation of memoryless simplification, roc.
IEEE Trans. on is. and Comp. Graph., 98 115
46. indstroem, . (2000) ut f Core simplification of large polygonal models,
roc. ACM Siggraph 00, 259 262
47. indstrom, ., Tur , G. (2000) Image-Driven Simplification, ACM Trans. on
Graph., 204 241
48. Mintyld, M. (1988) An introduction to solid modeling. Computer Science ress,
Roc ville, Md
49. a arola, R., Rossignac, .(2000) Compressed rogressive Meshes. IEEE Trans.
on is. and Comp. Graph., .1 79-93

50. Rossignac, ., Borrel, . (1993) Multi resolution 3D approximation for render-
ing complex scenes, 2nd Conf. on Geom. Model. in Comp. Graph., 453 465

51. Rossignac, . (1999) EdgeBrea er: Connectivity compression for triangle
meshes. IEEE Trans. on is. and Comp. Graphics, 47 61

52. Rossignac, ., Cardoze, D. (1998) Matchma er: Manifold Breps for non-
manifold r-sets. Tech. Rep. GIT-G U-99-03 G U Center, Georgia Inst. of Tech.

53. Schroeder, W., arge, ., orensen, W. (1992) Decimation of triangle meshes,

roc. ACM Siggraph 92, 65 70
54. Schroeder, W. (1997) A topology modifying progressive decimation algorithm,
roc. IEEE is. 97, 205 212

55. Scott, D.S. (1980) AS 2 Documentation, Technical Report, Computer Sci-
ence Dept., University of Texas at Austin.

56. Szymcza , A., King, D., Rossignac, . (2000) An EdgeBrea er-based e cient
compression scheme for regular meshes.

57. Taubin, G., Rossignac, . (1998) Geometric compression through topological
surgery. ACM Trans. on Graph., 1 .2 84 115.

58. Taubin, G., Gueziec, A., Horn, W., azarus, . (1998) rogressive forest split
compression. roc. ACM Siggraph 98, 123 132.

59. Touma, C., Gotsman, C. (1998) Triangle mesh compression. roc. Graph. In-
terf. 98, 26 34

60. Turan, G. (1984) Succinct representations of graphs. Discrete Appl. Math.,
289 294

61. Tur , G., Re tiling polygonal surfaces (1992) roc. ACM Siggraph 92, 55 64

62. Tutte, W. (1962) A census of planar triangulations. Can. ourn. of Math., 14,
21 38

63. Witten, I. H., eal R. M., Cleary, . G. (1987) Arithmetic coding for data
compression. Comm. of the ACM, 3 (6), 520 540

nde

add operation, 24
ad acent, 1

alias errors, 7
arithmetic coding, 4

base points, 15
bpv, 16

center operation, 19
coding
arithmetic, 4
edge based, 23
face based, 18
Huffman, 3
vertex based, 24
command symbol, 17
connectivity, 1
arbitrary, 7
semi-regular, 15
subdivision, 7
criteria
binary, 9
continuous, 9
fairness, 13
cut-border, 17

Cut-Border Machine, 18

distance measures, 11

edge
active, 17
processed, 17
untouched, 17
edge based coding, 23
Edge Brea er, 18
edge collapse, 10
end operation, 17
entropy, 3
error accumulation, 11
Euler
characteristic, 2
formula, 2
Euler operator, 9

face

current, 17

processed, 17

untouched, 17
face based coding, 18
face operation, 23

face vertex incidence table, 2

gate, 17
genus, 2
geometry, 1
growing
operation
add, 24
center, 19
end, 17
face, 23
hole, 20
left, 19
merge, 18
right, 19
split, 17
region, 17

half-edge collapse, 10
handle, 2

harmonic parameterizations, 15

Hausdorff distance, 12
heap data structure, 9
hierarchical models, 6
hole operation, 20
Huffman coding, 3

incremental decimation, 6

aplacian operator, 35
least s uares, 8
left operation, 19
loop stac , 17

manifold, 2
mass-spring system, 15
merge operation, 18
mesh
complexity, 6
connectivity, 1

44 Gotsman, Gumhold, Kobbelt

decimation, 5 resampling, 6
elements, 1 reverse decoding, 21
genus, 2 right operation, 19
geometry, 1
orientable, 2 sharp features, 13
polygonal, 1 simple, 2
simple, 2 singular value decomposition, 9
mesh connectivity, 14 spectral
mesh consistency, 9 basis, 35
' coe cient, 35
orientable, 2 transform, 35

parallelogram predictor, 33 split operation, 17

pr(:;f):lo;g topological changes, 7
rule ,29 topological operators, 9
)

. . 14
predictive coding, 29 torus,

rogressive transmission, 6 ..
prog ’ vector uantization, 31

uadric error metric, 9, 12 verte>'<
uantization, 28 a(':tlve, 17
cell, 30 pivot, 17

error, 30 representative, 7, 8
non-uniform, 30 untouched, 17
uniform, 29 vertex based coding, 24
vector, 31 vertex clustering, 6

vertex contraction, 10
remeshing, 15 vertex removal, 10

