
The Visual Computer manuscript No.
(will be inserted by the editor)

Snakes with topology control

Stephan Bischoff, Leif P. Kobbelt

RWTH Aachen, Lehrstuhl für Informatik VIII, 52056 Aachen, Germany
e-mail: {bischoff|kobbelt}@informatik.rwth-aachen.de

Received: date / Revised version: date

Abstract We present a novel approach for representing and
evolving deformable active contours by restricting the move-
ment of the contour vertices to the grid-lines of a uniform
lattice. This restriction implicitly controls the (re-) parameter-
ization of the contour and hence makes it possible to employ
parameterization independent evolution rules. Moreover, the
underlying uniform grid makes self-collision detection very
efficient. Our contour model is also able to perform topology
changes but – more importantly – it can detect and handle
self-collisions at sub-pixel precision. In applications where
topology changes are not appropriate we generate contours
that touch themselves without any gaps or self-intersections.

Key words active contour model – topology control – im-
plicit parameterization

1 Introduction

For the segmentation and shape reconstruction from noisy
image data, contour extraction schemes based on deformable
models have become a standard technique. The major reason
for their successful use in many applications is the possibil-
ity to integrate physical and topological knowledge into the
segmentation process and thus “interpolate” the image infor-
mation where it is destroyed by noise.

Various representations have been proposed which adapt
to the extreme requirements in an active contour model. Ex-
plicit contour representations can be processed very efficiently
and their physical properties can be controlled in a very in-
tuitive manner. Implicit contour representations require more

Correspondence to:
Stephan Bischoff
Lehrstuhl für Informatik VIII
52056 Aachen
Germany
e-mail: bischoff@informatik.rwth-aachen.de
Phone: +49 241 8021817
Fax: +49 241 8022899

sophisticated implementations but they are free of parame-
terization artifacts and they allow the contour to change its
topology in a natural manner (see the next section for a more
detailed description).

Our new approach inherits from both the explicit and the
implicit framework: The representation of the contour is ba-
sically explicit, its evolution however is governed by parame-
terization independent rules similar to those of the fast march-
ing methods in the level set framework. Self-collisions of the
contour can be detected easily and the algorithms can flex-
ibly decide if the contour topology should change or should
be preserved. The main contributions of our proposed scheme
are:

– Flexible topology control. In contrast to previous work we
are able to efficiently detect and resolve self-collisions
without globally reparameterizing the contour. Depend-
ing on the user’s preferences, our algorithm can be tuned
to preserve the contour’s topology as well as to merge the
colliding contours.

– Automatic resampling. The resolution and parameteriza-
tion of our contour is automatically determined by an un-
derlying uniform lattice. As a consequence, there is no
need for a complicated global resampling procedure when
the contour is deformed.

– Simplicity. The basic operations used in our scheme are
conceptually straightforward and can be implemented eas-
ily. All computations during the evolution are local and no
handling of special cases is necessary. In particular, there
is no need to maintain and update elaborate data struc-
tures, like narrow bands of voxels, or to approximate and
discretize differential equations.

– Speed. Due to the robustness of the evolution procedure
and the flexible control of the time steps, we can use
an explicit Euler integration scheme to trace the contour
through the embedding force field.

Overview In Section 2 we give a short overview of previous
and related work. Section 3 briefly introduces active contour
models. In Section 4 we describe our new scheme and give
implementation hints. Results for synthetic as well as for real

2 Stephan Bischoff, Leif P. Kobbelt

data are presented in Section 5. In Section 6 we give conclu-
sions and propose future work.

2 Previous and related work

Previous work In recent years, image segmentation based
on active contour models has become a powerful tool. Espe-
cially in medical imaging applications, like the segmentation
of organic structures or the discrimination of brain tissues,
these models are ubiquitous [1,6,10,16,23]. Depending on
the representation of the contour shape as the range or the
kernel of a function, active contour models can be classified
as either explicit or implicit.

Image segmentation based on explicit active contour mod-
els has first been introduced in 1987 by Kass et. al [13]. In
their work, a contour is represented by a parametric model
(a so-called snake) and its evolution is governed by minimiz-
ing an energy-functional and applying a semi-implicit inte-
gration scheme. Since then numerous refinements and exten-
sions to the original scheme have been proposed [3–5,8,12,
19]. Several authors have introduced different explicit rep-
resentations e.g. finite element models [3] and subdivision
curves [12]. The explicit active contour model has also been
generalized to higher dimensions, such as to segment volume
data like MRI scans of human organs [3,5,22]. Early explicit
active contour models could not handle topology changes,
like merging or splitting of contours. In order to overcome
this limitation several authors have proposed topologically
adaptive contour models which are e.g. based on repeated re-
sampling of the contour on an affine grid [7,8,15,18,20].

Implicit models, on the other hand, represent the contour
as the (zero-) level set of a scalar field and were first intro-
duced by Sethian and Osher in 1988 [24]. Since then, level set
methods have been applied in numerous applications, among
them image segmentation, fluid dynamics and computer vi-
sion. We refer to the books [25,27] for a thorough overview.
In order to overcome the computational complexity of level
set methods, fast marching and narrow band methods have
been introduced [2,26]. Implicit representations can easily
handle topological changes of the contour, so in contrast to
explicit representations special care has to be taken, if topo-
logical changes of the level set have to be avoided [11].

Contribution In this paper, we introduce an active contour
model that combines properties of the implicit as well as the
explicit frameworks. The evolution of the contour is driven by
Huygen’s principle and hence resembles that of the level set
methods. The topology of the contour is represented explic-
itly by a control polygon and can be compared to the tradi-
tional snakes approach. Note, however, that we only address
the evolution process and the topology control of the con-
tour — we do not propose any new ways of defining image
gradient forces or otherwise improve the quality of the seg-
mentation. This is reflected by the fact that we will consider
the forces that drive the contour as a “black box” which is
provided by the user and which incorporates all the external

t

nc(s,t)

s

Fig. 1 Evolving contours: A contour c(s, t) is parameterized by arc
length s and time t. The movement of each contour point c(s, t) can
be decomposed into tangential and normal components. Whilst the
tangential component affects the parameterization of the contour,
only the normal component modifies the contour’s shape.

and internal forces that account for the quality of the final
segmentation.

The combination of implicit and explicit techniques pro-
vides us with a greatly improved control over the topology
of the contour. Collisions can accurately and robustly be de-
tected and resolved without incurring a run-time overhead.
Purely implicit models, in contrast, provide no collision de-
tection at all. For purely explicit models collision detection
is possible, but expensive and often inaccurate. In particu-
lar, in our model the user can choose whether two colliding
contours should “clash”, an operation that is not possible in
implicit frameworks or whether they should “merge”, an op-
eration that is inefficient in explicit frameworks.

3 Active contour models

In this section we give a short introduction to active contour
models. For simplicity we will restrict ourselves to the two-
dimensional case although most of the following can readily
be generalized to higher dimensions.

The idea of active contour models is to track the evolution
of a simple, closed curve, the so-called contour. The contour
can be represented either implicitly as the level set of a func-
tion [25,27] or explicitly by a parametric representation [3,
12,13]. Here we will focus on the latter case.

Consider a contour c(s, t) ∈ R
2 where s ∈ [0, 1] param-

eterizes the contour arc and t ∈ R≥0 designates time, see
Figure 1.

The evolution of c can then be described by the following
equation

∂c

∂t
= α t + β n (1)

where t is the tangent, n is the outward normal and α and β
are arbitrary functions describing the tangential and the nor-
mal speeds of the contour respectively. Here and in the fol-
lowing we will assume that the contour is closed, i.e. that

c(0, t) = c(1, t)

and that it consists of only one component.

Snakes with topology control 3

There are numerous ways to define the functions α and
β. In the classical setup they are chosen such that the contour
minimizes an energy functional

E(c) = Einternal(c) + Eexternal(c). (2)

Einternal represents the internal energy of the contour, and
is in general a weighted combination of membrane and thin-
plate energy which penalize stretching and bending, resp. It
is used to regularize, i.e. to smooth the contour, and hence to
avoid artifacts like overshooting or ripples. Eexternal repre-
sents the external energy which is in general a potential field
derived from the underlying segmentation problem, e.g. at-
traction to image features.

It can be shown, that for each choice of speed functions
(α, β) there exist other speed functions (0, β̄) such that the re-
sulting contour shapes are equivalent [9,14]. Hence, the tan-
gential component α in general only affects the parameteri-
zation of the contour while β determines the contour’s shape.
For parameterization-less formulations, like the implicit level
set formulation or our r-snake formulation (see Section 4),
Equation 1 can be simplified to

∂c

∂t
= β̄n

i.e. the contour only evolves in normal direction.
In practice, the contour c is represented either discretely

by the vertices of a polygon or continuously by e.g. B-splines,
subdivision curves or other basis functions. For our purposes,
we discretize the contour c as a polygon in space and in time
by a sequence of vertices, so-called snaxels,

C (ti) = ci

1
, . . . , ci

ni
, i ∈ N

where ni designates the number of vertices of the snake at
timestep ti ∈ R≥0. By approximating derivatives through fi-
nite differences, the continuous Equation 2 can then be trans-
formed into a discrete update rule for the snaxel positions.

In this discrete setup, the tangential speed α can be thought
of as regularizing the vertex distribution, e.g. towards uniform
or curvature dependent vertex spacing. However, in general
some local or global vertex insertion/deletion strategies have
to be implemented in order to adapt the number of vertices to
the contour’s length.

4 Parameterization free active contour models

In this section we present a simplified type of snakes that
we call restricted snakes (r-snakes). Although r-snakes lack
some of the original snakes flexibility, they can be used in
a wide range of settings and allow for topology preserving,
intersection-free evolution of a contour.

An r-snake is a special type of snake. Instead of letting the
snaxels move freely, we impose certain restrictions on their
movements. Most importantly the snaxels may only move
along the lines of a given, fixed grid. Whenever a snaxel runs
into a gridpoint, it is automatically split. Finally we assume

that the snake moves only normal to itself and that it may not
self-intersect.

The above restrictions allow us on the one hand to effi-
ciently detect and avoid collisions. On the other hand, they
automatically resample the snake according to the resolution
of the underlying grid.

4.1 Definition

In the following we assume that the Euclidean plane is sub-
divided by a Z× Z integer grid into unit squares that we call
pixels. The sides of the pixels are called grid segments in con-
trast to snake segments that join two consecutive snaxels.

Consider an intersection-free, closed snake

S = s1, . . . , sn,

such that S divides the Euclidean plane into an interior and an
exterior part. We call S a restricted snake, r-snake for short,
if the following three properties hold:

1. (Supporting segments) Each snaxel s ∈ S lies on a grid
segment which we call the supporting segment of s. To be
more precise, for each snaxel s there are two gridpoints
fs ∈ Z× Z (“from”) and ts ∈ Z× Z (“to”) such that

||fs − ts|| = 1

and an affine parameter 0 ≤ ds < 1 (“distance”) such
that s’s position ps on the Euclidean plane is given as

ps = (1− ds) fs + ds ts

(see Figure 2).

interior

exterior

d
s

t
s

f
s

s

Fig. 2 Snaxel: In this and the other figures snaxels are represented
as arrowheads such as to indicate their “from” and “to” vertices.

2. (Orientation) All snaxels are consistently oriented. By con-
vention, each snaxel s points from the interior of S to the
exterior of S (see Figure 2).

3. (Uniqueness) No two consecutive snake segments of an
r-snake S may lie in the same pixel. Note that this condi-
tion follows readily from condition 2, and is merely stated
for convenience. Hence snaxel configurations as shown in
Figure 3 are forbidden and notches that are thinner than
one pixel cannot be represented.

4 Stephan Bischoff, Leif P. Kobbelt

a) b)

Fig. 3 Forbidden snaxel configurations: The configurations shown
above are forbidden, as the darkened snaxels point from the interior
to the interior of the contours.

4.2 Implementation

For representing an r-snake, we use a simple data structure.
Each snaxel object has 8 members, namely

struct Snaxel {
float d; /* affine parameter */
float v; /* speed */
int fx, fy; /* "from" vertex */
int tx, ty; /* "to" vertex */
Snaxel *next, *prev;

/* connectivity */
}

The next and prev pointers are used to arrange all snax-
els of an r-snake in counter-clockwise direction in a doubly-
linked list.

An r-snake can be initialized by resampling an arbitrary
closed, self-intersection free curve on the Z × Z grid. If the
curve is e.g. given by a signed distance function, the resam-
pling can easily be performed by a Marching Cubes like al-
gorithm [17]. A typical r-snake is shown in Figure 4.

Fig. 4 A typical r-snake: Note that the two darkened snaxels share
the same supporting segment. Such a sub-pixel configuration could
not be modeled with snakes in level set formulations [11].

4.3 Evolving an r-snake

In this section we describe how an r-snake evolves according
to the impact of external and internal forces. In the following
we will always assume

1. that the r-snake moves in normal direction and
2. that the r-snake moves outward only.

In general the tangential component of a force affects
only the contours’ parameterization but not its geometry [14].
Restriction 1 is hence very natural in the parameterization-
less level set framework. As the parameterization of an r-
snake is automatically adapted according to the underlying
grid and hence does not need to be adjusted by tangential
forces, we also apply restriction 1 for our setup.

Restriction 2 is basically for convenience only. The fol-
lowing exposition could also be formulated without this re-
striction but then it would be more elaborate. Note that re-
striction 2 can also be circumvented by alternately reversing
the orientation of the r-snake after each update step, hence
exchanging the “inside” and the “outside”, see also [21].

In general, the evolution of a snake is determined by var-
ious factors and parameters, like external and internal forces.
For the sake of generality and simplicity, however, we assume
the existence of a “black box” v, which, given an arbitrary
snaxel s computes the (scalar) speed vs of s in direction nor-
mal to the r-snake. This black box speed function is assumed
to take the application dependent internal and external ener-
gies into account.

Suppose that for each snaxel s a normal ns is given (this
will be explained in more detail below). In general the normal
ns of the snaxel s will not coincide with the direction of the
supporting segment of s. As the snaxel can only move along
its supporting segment, we have to project the normal onto the
segment and compute the “projected” speed ṽs of the snaxel.
As one can see from Figure 5 the projected snaxel speed can
be easily computed as

ṽs =
vs

ns · ds

where ds = ts − fs is the unit vector pointing in direction
of the supporting segment of s. This formula results in the
following update rule for the snaxel positions

ds ← ds + ∆t ṽs

where ∆t is the timestep. (The computation of ∆t is de-
scribed in Section 4.4.) Note that the projected speed ṽs is
in general larger in magnitude than the original speed vs, as
ds is in general not parallel to ns.

There are numerous ways to approximate a normal ns in a
snaxel s. Although often sufficient, these schemes tend to ex-
hibit some artifacts as is demonstrated in the following exam-
ple. Consider an r-snake which evolves with constant (unit)
speed v ≡ 1 and let ∆t = 0.5. After updating all vertices
we expect that the r-snake has moved outwards by 0.5 units.
Actually, however, because we use only approximated nor-
mals, cusps and creases may appear as is shown in Figure 6.

Snakes with topology control 5

t s

ns

fs

1/()n ds s

Fig. 5 Projecting the snaxel speed: As snaxels can only move along
their supporting segments, the normal speed has to be projected onto
the segment.

In this case, the speed ṽs resulting from the projection of ns

is too high and results in an “overshooting” effect. Analogous
effects can be observed in case of a concave corner.

>0.5

0.5

s

ns

Fig. 6 A contour evolving with unit speed v ≡ 0.5 may nevertheless
develop cusps because of the arbitrary approximation of the normal
ns of the snaxel s.

To avoid the “overshooting” and to avoid the necessity
to approximate vertex normals altogether, we employ a con-
struction following Huygens’ principle [27]. For this we imag-
ine for a moment, that the r-snake is not discrete but contin-
uous and that it locally evolves with constant speed. The in-
tersections of the resulting continuous contour with the grid
will then determine the new snaxel positions of the discrete
contour.

Consider the case of a snaxel s on a convex corner. We ap-
proximate normals both “from the left” and “from the right”
by taking the normals of the two snake segments adjacent to
s. To be more precise, let s be the snaxel under consideration,
a its predecessor and b its successor (see Figure 7). Then we
set

na = (ps − pa)⊥

nb = (pb − ps)
⊥

These two normals give rise to two projected snaxel speeds
ṽa and ṽb. Two cases have to be distinguished, see Figure 8.

– Both normals lie on the same side of the supporting seg-
ment of s (Figure 8a). The final projected speed should
be taken as

ṽ = min{ṽa, ṽb}

– The normals lie on different sides of the supporting seg-
ment of s (Figure 8b). In this case the final projected
speed should be set to

ṽs = vs

a

b

s

nb

na

Fig. 7 Normal approximation: In each snaxel s we approximate nor-
mals from the “left” and from the ”right” by taking the normals of
the two snake segments adjacent to s.

Let us now consider the case of a snaxel s on a concave
corner. Here again there are two possibilities for the relative
orientation of the normals na, nb and the supporting segment,
see Figures 8c and 8d. Both cases lead to the same formula,
namely

ṽs = max{ṽa, ṽb}

4.4 Determining the timestep

To compute the optimal timestep ∆t, we proceed as follows.
First we note that the number of vertices of an r-snake C does
not change, as long as the r-snake does not cross a grid ver-
tex. Hence a natural upper bound for the timestep ∆t can be
determined as follows: We first compute for each snaxel s its
speed vs, and then set

∆t = min
s∈C
{(1− ds)/ṽs}

to update all snaxels simultaneously with this timestep. In this
way we can be sure that the r-snake does not cross a gridpoint
“during” the snaxel update, i.e. it is always guaranteed, that

ds + ∆t ṽs ≤ 1.

Note that as this is a global bound on the timestep, the timestep
is expected to decrease when the number of snaxels increases.
Hence, for a larger number of snaxels, the algorithm has to
perform more update cycles.

4.5 Splitting snaxels

Whenever a snaxel s runs into a gridpoint x = ts, i.e. when-
ever

ds + ∆t ṽs = 1

6 Stephan Bischoff, Leif P. Kobbelt

a)

nb

na

b)

nb

na

c)

nb

na

d)

nb

na

Fig. 8 Snaxel speeds are computed by applying Huygen’s princi-
ple on continuous contours: The original contour (dark) is locally
propagated with constant speed. The intersection points of the re-
sulting continuous offset contour (light) with the grid are then used
to determine the new snaxel positions of the original contour.

we split it into three new snaxels a, b, c. The three new snax-
els emanate from x in the other directions but have the same
position as s. To be more precise, we set

sa = sb = sc = 0

fa = fb = fc = x

and ta, tb, tc accordingly. Figure 9 depicts this operation.
After a snaxel split, condition 3 of Section 4.1 might be

violated, as is depicted in Figure 10. To reestablish the r-
snake property we perform a cleaning conquest: All snax-
els that violate condition 3 simply are removed. The cleaning
conquest has to be applied recursively to the neighborhood
of the split snaxel and to the neighborhood of each removed
snaxel.

Performing a snaxel split and the following cleaning con-
quest reestablishes the r-snake property. Nonetheless there of-

a)

s

x

b)

s

c)

c

b

a

d)

c

b

a

Fig. 9 Splitting snaxels: a) Original r-snake. b) Snaxel s has run
into gridpoint x from the south. c) Snaxel s is split into three new
snaxels a, b, c that run to the east, north and west respectively. d)
Some timesteps later.

ten remain double and triple vertices as depicted in Figure 11.
These vertices are conceptually distinct, as they have differ-
ent supporting segments. However, they share the same spa-
tial position such that the “left” and/or “right” normals are
not well-defined. In such a case, we only use the well-defined
normals to compute the projected speed. If there is none, as
in the case of a center triple vertex s, we set ṽs = vs.

4.6 Collision detection and avoidance

In our setup it is easy to detect and avoid (self-) intersec-
tions of r-snakes. For each grid segment, we store the snaxels
that are supported by this segment (at most two). If mem-
ory requirements are an issue, this can be accomplished by a
hashtable, which is indexed by the snaxels “from” and “to”
coordinates, see e.g. [8]. Hence it is easy to detect poten-
tial collision partners: They are supported by the same grid
segment and hence have the same hash-key. Whenever a po-
tential collision is detected, we adapt the timestep such that
the two corresponding snaxels will not cross, but just touch
each other. Depending on the application, we may choose
whether the two colliding snaxels will clash and come to
a halt (topology preservation) or whether they will merge
(topology change), see Figure 12.

Clashing Because the contour propagates only outward and
may not self-intersect, the two colliding snaxels will stay in
their position forever. Hence, we flag them as frozen and ex-
clude them from the remaining update steps (Figure 13). We
can further decide, whether frozen snaxels are affected by the

Snakes with topology control 7

a)

s

x

b)

s

c) d)

a b

e) f)

Fig. 10 Cleaning conquest: a) Original r-snake. b) Snaxel s has run
into gridpoint x. c) Snaxel s is split into three new snaxels. d) With-
out a cleaning conquest both snaxel a and snaxel b would violate
condition 3. e) Snaxels a and b are removed by the cleaning con-
quest. f) Some timesteps later.

a) b)

Fig. 11 Multiple vertices: Triple (a) and double (b) vertices may
appear after a snaxel split. Although these vertices share the same
spatial position, they are conceptually distinct, as they are supported
by different grid segments. Due to the parameter independent evolu-
tion rule this degenerate snake parameterization does not affect the
numerical robustness of the algorithm.

cleaning conquest or not. This will result in different behavior
as is demonstrated in Figure 14.

Merging In case topology changes of the snakes are per-
mitted, the two colliding snaxels a and b can be merged by
simply relinking their neighboring snaxels. For this we just
set

Fig. 12 Collision detection and handling. The above sequences
show 5 snakes evolving and colliding. In the top row, the colliding
snakes change topology and merge. In the bottom row, the colliding
snakes keep their topology and come to a halt.

a)

a b

b)

c) d)

Fig. 13 Collision detection and handling: a) Original r-snake, a po-
tential collision is detected as snaxels a and b are supported by the
same grid segment. b) The timestep is adapted such that snaxels a

and b do not cross but just touch each other. c) If the topology of the
snakes must not change, the snaxels that have collided are frozen and
excluded from further updating. d) If topology changes are wanted,
snaxels a and b are removed and their previous/following snaxels
are connected such that the two parts of the snakes merge.

a->next->prev = b->prev
b->prev->next = a->next
b->next->prev = a->prev
a->prev->next = b->next

8 Stephan Bischoff, Leif P. Kobbelt

Fig. 14 Depending on whether frozen snaxels are removed by the
cleaning conquest, recesses will dissappear as soon as they com-
pletely touch each other (top) or are conserved (bottom).

and remove a and b (Figure 13). After that we perform a
cleaning conquest to remove spurious bad snaxels. Hence, in
contrast to [8] and [18] this operation does not require any
resampling. Notice that the topology changes are very simple
operations even in this explicit representation setting. This is
due to the fact that the restrictions for the snaxel movement
guarantee that collisions always happen at the contour ver-
tices (and not at the segments).

5 Results

Synthetic Data Figure 15 shows the evolution of two r--
snakes. They are initialized at the outside and at the inside
of a polygon, then they are propagated with unit speed v ≡ 1.
The figure shows snapshots of the contour at equidistant time
intervals. As can be seen, the contours obey Huygens’ princi-
ple and nicely handle concave as well as convex corners.

Real Data In Figure 16 we applied our algorithm to the
problem of reconstructing the brain cortex from an MRI im-
age. In this case the grid resolution has been set to the resolu-
tion of the image (256 × 256), but higher resolutions would
also be possible. First, the MRI image has been pre-processed
by a 3× 3 Gaussian filter. Then we initialized two circular r-
snakes for each of the two hemispheres. The snaxels’ speeds
are set proportional to the underlying image intensities. The
segmentation process took less than three seconds. In prac-
tice, the results could be enhanced by additionally applying
well-known standard segmentation techniques, like using in-
ternal forces on the r-snake or applying scale-space techniques
on the image [13].

Drawbacks Because the snaxels of an r-snake are restricted
to move along grid segments, the algorithm sometimes ex-
hibits preferences for certain directions. In particular, when
two r-snakes collide in diagonal direction, “ripples” in the
order of one pixel’s magnitude may appear, as is depicted
in Figure 17. These ripples in particular occur in synthetic

Fig. 15 Contour evolution: The image above shows the evolution of
two contours that were initialized as the inner and outer boundary of
the polygon. Both contours propagate with unit speed v ≡ 1 and are
shown at equidistant time intervals. The resolution of the underlying
grid is 512 × 512.

datasets where there is no underlying external force that pro-
vides a meaningful gradient which guides the snaxels to their
final destinations. Since the ripples represent features at sub-
pixel precision which can be considered as sampling arti-
facts of the discretized underlying scalar field, we smooth the
frozen snaxels of the r-snake in a post-processing step to re-
move these artifacts.

6 Conclusions and future work

We have presented a novel approach for the representation
and evolution of active contours. Its major advantages are

– Ease of implementation
– Automatic adaption of the contour parameterization
– Efficient collision detection and avoidance
– Topology control

We have demonstrated its applicability on synthetic as well as
on real image data. Our approach proves to be especially well
suited for the reconstruction of convoluted organic structures,
like the cortex of the brain.

The major drawback in our current implementation is that
we set the time steps by taking a global minimum. This could
easily be improved by adjusting the time steps locally and
integrating the cleaning conquest into the evolution proce-
dure to avoid inconsistent snake configurations. The “ripple”-
problem is of minor relevance in real applications since here
the speed function is usually dominated by the external en-
ergy forces. In the future, we plan to generalize our algorithm

Snakes with topology control 9

Fig. 16 Contour evolution: The image above shows the evolution
of two r-snakes in order to segment the brain cortex in an MRI im-
age. The speed of a snaxel is proportional to the image intensity at
the position of the snaxel. Note in particular the gap-less seam that
reconstructs the “intensity valleys” as shown in the closeup.

a) b)

Fig. 17 Ripples: When two r-snakes clash together, there may ap-
pear ripples in the order of one pixel’s magnitude (a). These ripples
can be removed in a post-processing step by smoothing the r-snake
(b).

to higher dimensions and to develop a method such that pos-
itive as well as negative speeds can be applied in one update
step.

References

1. M. O. Berger. Snake growing. In Proc. First European Conf.
on Computer Vision, pages 570–572. Springer LNCS, 1990.

2. D. L. Chopp. Computing minimal surfaces via level set curva-
ture flow. Jour. of Comp. Phys., 106:77–91, 1993.

3. I. Cohen, L. Cohen, and N. Ayache. Using deformable sur-
faces to segment 3-d images and infer differential structures.
Computer Vision, Graphics and Image Processing: Image Un-
derstanding, 56(2):242–263, 1992.

4. L. Cohen. On active contour models and balloons. Computer
Vision, Graphics and Image Processing: Image Understanding,
53(2):211–218, 1991.

5. L. D. Cohen and I. Cohen. Finite element methods for active
contour models and balloons for 2d and 3d images. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 15(11):1131–
1147, 1993.

6. C. A. Davatzikos and J. L. Prince. An active contour model
for mapping the cortex. IEEE Trans. on Medical Imaging,
14(1):112–115, 1995.

7. D. DeCarlo and D. Metaxas. Blended deformable models. In
Proceedings CVPR ’94, pages 566–572, 1994.

8. H. Delingette and J. Montagnat. Shape and topology constraints
on parametric active contours. Computer Vision and Image Un-
derstanding, 83:140–171, 2001.

9. M. Gage. On an area-preserving evolution equation for plane
curves. Contemp. Math., 51:51–62, 1986.

10. A. Gupta, T. O’Donnell, and A. Singh. Segmentation and track-
ing of cine cardiac mr and ct images using a 3d deformable
model. In IEEE Conf. on Computers and Cardiology, pages
661–664, 1994.

11. X. Han, C. Xu, and J. L. Prince. A topology preserving de-
formable model using level sets. In Computer Vision and Pat-
tern Recognition Proceedings, pages 765–770, 2001.

12. J. Hug, C. Brechbühler, and G. Szekely. Tamed snake: A parti-
cle system for robust semi-automatic segmentation. In Medical
Image Computing and Computer-Assisted Intervention, number
1679 in LNCS, pages 106–115, 1999.

13. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active con-
tour models. Internation Journal of Computer Vision, 1:321–
331, 1988.

14. B. Kimia, A. Tannenbaum, and S. Zucker. On the evolution of
curves via a function of curvature i. the classical case. Jour-
nal of Mathematical Analysis and Applications, 163:438–458,
1992.

15. J.-O. Lachaud and A. Montanvert. Deformable meshes with au-
tomatic topology changes for coarse-to-fine three-dimensional
surface extraction. Medical Image Analysis, 3(2):187–207,
1999.

16. S. Lobregt and M. Viergever. A discrete dynamic contour
model. IEEE Trans. on Medical Imaging, 14(1):12–23, 1995.

17. W. E. Lorensen and H. E. Cline. Marching cubes: a high res-
olution 3d surface reconstruction algorithm. In SIGGRAPH 87
proceedings, pages 163–169, 1987.

18. T. McInerney and D. Terzopoulos. Topologically adaptable
snakes. In International Conference on Computer Vision, pages
840–845, 1995.

19. T. McInerney and D. Terzopoulos. Deformable models in medi-
cal image analysis: A survey. Medical Image Analysis, 1(2):91–
108, 1996.

20. T. McInerney and D. Terzopoulos. Topology adaptive de-
formable surfaces for medical image volume segmentation.
IEEE Transactions on Medical Imaging, 18(10):840–850,
1999.

21. T. McInerney and D. Terzopoulos. T-snakes: Topology adaptive
snakes. Medical Image Analysis, 4(2):73–91, 2000.

22. J. V. Miller, D. E. Breen, W. E. Lorensen, R. M. O’Bara, and
M. J. Wozny. Geometrically deformed models: A method for
extracting closed geometric models from volume data. In SIG-
GRAPH ’91 Proceedings, pages 217–226, 1991.

23. F. Prêteux N. Rougon. Directional adaptive deformable models
for segmentation. Journal of Electronic Imaging, 7(1):231–256,
1998.

24. S. Osher and J. A. Sethian. Fronts propagating with curvature-
dependent speed: Algorithms based on hamilton-jacobi formu-
lations. J. Comput. Phys., 79(1):12–49, 1988.

10 Stephan Bischoff, Leif P. Kobbelt

25. S. J. Osher and R. P. Fedkiw. Level Set Methods and Dynamic
Implicit Surfaces. Springer, 2002.

26. J. A. Sethian. A fast marching level set method for monotoni-
cally advancing fronts. Proc. Nat. Acad. Sci., 93(4):1591–1595,
1996.

27. J. A. Sethian. Level Set Methods and Fast Marching Methods.
Cambridge University Press, 1999.

Leif P. Kobbelt is a full professor and
the head of the Computer Graphics
Group at the Aachen University of
Technology, Germany. His research
interests include all areas of Com-
puter Graphics and Geometry Pro-
cessing with a focus on multiresolu-
tion and free-form modeling as well
as the efficient handling of polygo-
nal mesh data. He was a senior re-
searcher at the Max-Planck-Institute

for Computer Sciences in Saarbr ücken, Germany from 1999
to 2000 and received his Habilitation degree from the Uni-
versity of Erlangen, Germany where he worked from 1996
to 1999. In 1995/96 he spent a post-doc year at the Univer-
sity of Wisconsin, Madison. He received his Master’s (1992)
and Ph.D. (1994) degrees from the University of Karlsruhe,
Germany. Over the last years he has authored many research
papers in top journals and conferences and served on several
program committees.

Stephan Bischoff graduated in 1999
with a master’s in computer science
from the University of Karlsruhe, Ger-
many. He then worked at the graph-
ics group of the Max-Planck-Institute
for Computer Science in Saarbr ücken,
Germany. In 2001 he joined the Com-
puter Graphics Group at the Aachen
University of Technology, Germany,
where he is currently pursuing his
PhD. His research interests focus on

freeform shape representations for efficient geometry process-
ing and on topology control techniques for level-set surfaces.

