
Pacific Graphics 2008
T. Igarashi, N. Max, and F. Sillion
(Guest Editors)

Volume 27 (2008), Number 7

Interactive Global Illumination for

Deformable Geometry in CUDA

Arne Schmitz, Markus Tavenrath and Leif Kobbelt

Computer Graphics Group, RWTH Aachen University

Abstract

Interactive global illumination for fully deformable scenes with dynamic relighting is currently a very elusive goal

in the area of realistic rendering. In this work we propose a highly efficient and scalable system that is based

on explicit visibility calculations. The rendering equation defines the light exchange between surfaces, which we

approximate by subsampling. By utilizing the power of modern parallel GPUs using the CUDA framework we

achieve interactive frame rates. Since we update the global illumination continuously in an asynchronous fashion,

we maintain interactivity at all times for moderately complex scenes. We show that we can achieve higher frame

rates for scenes with moving light sources, diffuse indirect illumination and dynamic geometry than other current

methods, while maintaining a high image quality.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism: Radiosity

Figure 1: Four of our test scenes. In clockwise order (with

vertex count, overall FPS, GI updates): TORSO (7.1k, 70 fps,

0.4s), TEAROOM (11.8k, 75 fps, 0.5s), CONFERENCE (123k,

11 fps, 14.7s), IPHI (60k, 12 fps, 7.9s).

1. Introduction

To have interactive, full global illumination in dynamic or
deformable scenarios is considered a great achievement in
rendering. In the last years there were several approaches
that solve at least a part of this problem.

Our contribution in this work is that we show that with
today’s highly parallel multi-core CPUs and GPUs, it is pos-
sible to implement an interactive system for diffuse global il-
lumination solutions, using simple and efficient algorithms.
We have implemented our work on the NVIDIA CUDA plat-
form, due to the easy development on the platform. Our sys-
tem allows for rapid light exchange, using simple and very
efficient data structures that fully exploit the power of the
CUDA platform. Also we have achieved to maintain interac-
tivity in deformable scenes, with moving, non-rigid objects
and with moving light sources. This enables our system to
be used both in interactive relighting applications as also
in future game engines. Although we use the CUDA plat-
form, our system is general enough to be easily ported to
other parallel compute platforms such as the Cell architec-
ture, as well as other upcoming systems. We concentrated
on CUDA, since it is already available and offers the highest
degree of parallelization available.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Arne Schmitz, Markus Tavenrath & Leif Kobbelt / Interactive Global Illumination for Deformable Geometry in CUDA

������������	
���
�	����
���
	������

�����������
����
�������������

���������
��

���	
��������
�	��������

�������
�� !����

∀����
�
���	
���

#�∃����∀�%���
&�∋��
�

#�∃��
���	
��(���

�
�
��
�����
��

�
(
�
��

�

�

�
�
�)

��
�

�
��

�

�

�

∀�%�������
�����
��

∀������
���	
���(����

!	�����∗ !	�����+ !	�����,

�
�
��������
�������
���

Figure 1: The system is split into three parts: Handling of

dynamic objects, handling of dynamic light sources, and ren-

dering. Dynamic objects and light sources are handled asyn-

chronously, to allow for high rendering performance.

Our algorithm is based on explicit visibility computation.
For typical medium-scale scenes we can achieve a render-
ing performance that is up to 2× higher than other current
methods using implicit visibility. Also we can render more
complex scenes than those methods. We also show that the
performance scales with the number of GPUs in the com-
puter system. If the compute power of the GPUs is doubled,
the turnaround time for a full global illumination solution
is approximately halved. For interactive lighting with static
geometry we are about one order of magnitude faster than a
comparable solution using implicit visibility.

1.1. Related Work

There are numerous works published in the field of Global
Illumination. We will concentrate here on related work that
is dealing with the real time aspect of it, and also on work
that supports dynamic geometry.

When looking at real time ray-tracing, one can find vast
amounts of works that perform Whitted-style ray-tracing and
ray-casting. Notable here are the works of Popov, Shevtsov,
and Horn [PGSS07,SSK07,HSHH07] where the main focus
is on efficient kd-tree building and traversal. Furthermore
Wald [WH] showed how to build kd-trees efficiently. In a
similar work, Wächter et al. [WK06] showed how to use a
variation of the kd-tree to make building and traversal more
efficient. However, all those works and related ones only do
simple ray-tracing without diffuse inter-reflections.

Quite recently Dachsbacher et al. [DSDD07] presented an
approach that computes an approximate solution by trans-
mitting negative radiance through discrete bins of finite size.
The underlying assumption is that radiance is invariant along
rays, which is not the case for finite bins, so that some bias is
introduced. Similar to that is Dong et al. [DKTS07], where
a hierarchy is constructed that determines visibility implic-
itly. Both approaches allow diffuse reflections and indirect
light bounces and can handle dynamic scenes. Scenes with

dynamic elements have also been covered in other works, for
example Wald et al. [WBS07] use bounding volume hierar-
chies, since they can be updated quite fast.

An approach similar to ours is Havran et al. [HBHS05],
in which they store photon paths and evaluate them when
needed. We extend this by storing not only paths but a gen-
eralized link structure, that is evaluated similar to traditional
radiosity methods, but instead we propagate radiance. Other
methods also use a discrete ray sampling of the hemisphere
on a surface point to evaluate the radiance [CPC84, WRC].
There exist modernized versions of those algorithms, like the
work by Gautron et al. [GKBP05], which map onto current
GPU hardware. An approach by Heidrich et al. [HDKS00]
uses precomputed visibility, which is related to our ap-
proach. Their work only handles local visibility of static ge-
ometry, but allows for indirect illumination.

Kristensen et al. developed a competing approach
for interactive lighting [KAMJ05], which requires pre-
computations on a computer cluster but renders very fast.
Another interactive lighting approach is by Yue et al.
[YIDN07], which also requires pre-computations. Other
methods related to this are PRT-based methods which use
spherical harmonics or wavelets to store radiance [KTHS06,
SLS05]. However dynamic scenes cannot be handled in an
easy way and the pre-computations take some time.

2. System Overview

For interactive global illumination systems, it is important
to identify the main bottlenecks which are most time con-
suming. With global illumination using explicit visibility we
have several compute-intensive parts.

First, we have to build a spatial search structure. In our
case this is a kd-tree, for accelerating the visibility tests.
Building a kd-tree is computationally expensive, the lower
bound being Ω(n logn). Similar costs occur for determin-
ing the visibility in the scene. This is done by shooting rays,
each of which has O(logn) complexity. If mutual visibility
of all elements is to be computed, O(n2 logn) time is needed.
Since this is prohibitive for large scenes, we use an under-
sampling to reduce the complexity. This results in a link-
structure which determines the possible paths the light can
take in the scene.

The second most expensive step in the rendering pipeline
is computing the light exchange. Light is propagated through
the scene by gathering on the link-structure. Also, for inter-
active light design we support static geometry and moving
light sources. This allows us to update only the links from the
light source to the static scene geometry. Furthermore, GPUs
can efficiently compute the direct illumination, which can be
used to lessen the workload on other parts of the pipeline.

The rendering is the last step, and, although it is also com-
putationally expensive, can be done efficiently on consumer
graphics hardware. So this is not a great concern for imple-
menting an efficient global illumination pipeline.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Arne Schmitz, Markus Tavenrath & Leif Kobbelt / Interactive Global Illumination for Deformable Geometry in CUDA

Our proposed system uses this information to provide
three distinct algorithmic parts to maintain a guaranteed
frame rate. This allows for maximum flexibility in the user’s
interaction with the system. Figure 1 shows the structure
of our proposed rendering pipeline. It achieves interactive,
guaranteed frame rates by splitting the workload into three
parts for deformable geometry, interactive relighting, and
rendering of the scene using OpenGL.

The stages presented in Figure 1 run partially on the CPU
and partially on the GPU. The first stage for dynamic ge-
ometry, including kd-tree compilation and link compression
runs on the CPU, while the visibility tests run on the GPU. In
the second stage, light link sampling and the light exchange
run on the GPU. The light exchange only uses one GPU at
the moment, since it is the fastest part of the algorithm and
synchronization of multiple GPUs is less efficient. The third
stage consists of rendering the direct light on the GPU. We
manage to get both the CPU and the GPUs to be utilized
evenly, with the main parts being the kd-tree compilation on
the CPU and the visibility computation on the GPU.

2.1. Architecture

Our work uses the NVIDIA CUDA computing platform
[NVI07] for link generation and light exchange, while ren-
dering is performed using OpenGL. The system is general-
ized in such a way that it is easily portable to other com-
pute platforms. The CUDA system allows for a much sim-
pler development process, compared to traditional shading
languages like GLSL or HLSL, since the code is mostly stan-
dard C and allows easy debugging.

Most parts of the algorithm run asynchronously to allow
for interactive frame rates. Updates to the scene’s illumina-
tion are computed in the background. In section 4.1 we will
discuss the scalability of our approach. This is an important
aspect of our system, since we can easily take advantage of
more computing power, in the form of more CPU cores or
GPUs. With the current trend of more cores on the chip our
system will scale well with future hardware generations.

2.2. Explicit Visibility

We chose to use explicit visibility, in contrast to some recent
approaches. The alternative to use implicit visibility as de-
scribed in Dachsbacher et al. [DSDD07] would allow us to
omit the kd-tree and the expensive ray-queries. However the
convergence of these algorithms depend on the depth com-
plexity of the scene. That is as many iterations are needed
to converge to a correct solution as there are layers of oc-
cluding objects. Also the link structure of implicit visibility
algorithms can consume quite a lot of memory.

3. Algorithm

This section explains the different stages of our algorithm.
The main steps being kd-tree construction, link generation,
initial radiance updates and rendering.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 1
6

 6
4

 1
4

4

 2
5

6

 4
0

0

 5
7

9

 7
8

4

 1
0

2
4

R
a

y
s
 (

1
0

0
0

/s
)

Rays in batch

Tearoom
Iphi

Torso

Figure 2: This graph shows how the number of rays shot

at each vertex influences the number of rays shot per second

for different scenes. The more rays are shot per vertex, the

more coherent those rays are, and the higher the throughput.

3.1. kd-Tree Construction

For dynamic scenes, a fast construction of the kd-tree is im-
portant. At the same time the ray-traversal during link con-
struction needs to be fast. Because of this, we use the surface
area heuristic (SAH) during tree construction [MB90]. Since
the SAH is costly, we utilize initial clustering in the same
way as Shevtsov et al. [SSK07]. In the first log2 NC levels of
the kd-tree we use an object median split along the longest
axis of the current node’s bounding box, where NC denotes
the number of processing cores of the host CPU. After these
first levels, we have NC leaf nodes. After that we do parallel
subtree construction using the SAH heuristic. It should be
noted that quite recently Zhuo et al. [ZHWG08] presented
a method to build the kd-tree efficiently on the GPU, which
could probably make our system even faster.

After the tree has been constructed, we use the optimiza-
tion algorithm of Popov et al. [PGSS07], to generate ropes
at the leafs of the tree, to accelerate traversal.

3.2. Ray Shooting and Link Generation

Using the kd-tree created in this way we achieve between
0.5 and 5 million ray-traversals per second for highly inco-
herent secondary rays. The worst case happens in badly tes-
selated scenes with triangles of greatly varying size, while
uniformly tesselated shapes tend to produce better trees.

The basis of our algorithm is the surface parameterization
of the rendering equation [DBB06]:

L(x← Θ) =Le(x← Θ)+
Z

A
fr(y,ψ↔

−→yz)

L(y←−→yz)V (y,z)G(y,z)dAz

(1)

With y = r(x,Θ) and V being the visibility term and G the
geometry term. The goal of the ray shooting step is to create
a radiance link structure. Every link is defined between ver-
tices and weighted with the visibility and the geometry term

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Arne Schmitz, Markus Tavenrath & Leif Kobbelt / Interactive Global Illumination for Deformable Geometry in CUDA

������ ����	

��� ���

�
���
������

������ ����	

������ ����	

�	�������	�����������

�

�������

���

�
�
����������

�������

�������

 �����������

��!���� �
�� �

��� ���

�
���
������∀���

��!���� �
�� �

��!���� �
�� �

�	�� �������������������

#��∃������	����

�
����� � %

���&��

�
����� � %

�
����� � %

��� ���

#��∃�����������

�
�

�
�

�!
�

�

��	����
��∋�(

���

#��∃�∋����

��	����
��∋�(

��	����
��∋�(

Figure 3: This figure depicts the ray generation pipeline. Elements consisting of a vertex and a normal form the input. We

provide a discrete set of directions that are to be sampled (left). After the ray intersection from each vertex with each direction,

we get an array of element hits (middle) that is transformed into the final link structure (right). Every element now has a link

group of variable length associated, which points into the large link array.

respectively. By repeatedly gathering radiance on the link
structure, we achieve the evaluation of equation (1) by iter-
ation. The initial values are computed by explicit lighting,
as described in section 3.3 and the gathering is described in
section 3.3. After gathering, the radiance values are interpo-
lated by the OpenGL shader during the rendering step.

There are two ways to shoot the rays. One is to traverse
them synchronously, in step with the rendering pipeline.
This leads to lower frame rates, since the ray shooting is very
expensive. Therefore we perform asynchronous ray shoot-
ing, which results in an interactive rendering of the scene,
while a full global illumination solution is computed at a
lower frame rate and handed to the OpenGL renderer when
finished.

Ray Generation The ray shooting is divided into batches
that are sent to all available CUDA devices. The CPU is
used for creating these batches and later evaluating them and
for computing the final vertex colors. Every batch consists
of a number of elements (i.e. vertices), their local coordi-
nate basis, described by their normal vector, and a set CΩ of
ray directions to be sampled. In most examples we choose
nC = 256 distinct ray directions, covering the hemisphere in
a cosine-weighted fashion. The directions have to be trans-
ferred only once, since they are transformed into the local
basis of every element when needed.

Every processed batch returns an array of nC hit-structures
that contain the element id that was hit, and the barycentric
coordinates of the hit, as also the distance t on the ray. From
these hit structures, we generate the final link structure. Ev-
ery element is associated with a variably sized link group,
that points into the link array. See Figure 3 for a detailed
visualization of the data structures used.

We are computing radiance on vertices by building vertex-
to-vertex-links. But in the shooting stage we intersect with
triangles. We need to distribute the information from the
shooting stage to the vertices of the mesh. Consider that we
have hit the point x = uA+vB+wC on a triangle. We gener-
ate three links, weighted with their barycentric coordinates.
This weighting is necessary to satisfy the energy balance,
since we sample only nC directions on the hemisphere.

The hits found in this process are used to build the link
structure. However this produces a large number of redun-
dant links, since many rays hit the same triangle and there-
fore links to certain vertices are very redundant. Hence we
combine sets of links where both source and destination
vertex are the same, which results in compression ratios of
about 3 to 5 times. This is done by a straightforward algo-
rithm on the CPU after the shooting stage. First we iterate
over all links of a vertex and accumulate the geometry terms
G for specific peer vertices in an array. In a second itera-
tion we loop over all vertices found in the first iteration and
generate new links with the accumulated weighted geometry
terms.

A great advantage of our system is, that the total num-
ber of links scales at most linearly with the number of ele-
ments used, since every element only has a constant number
of links. The link compression is computationally rather in-
expensive, so that it pays off in the light exchange step and
allows for high update rates for moving light sources.

There are some notable observations when implementing
this on current CUDA hardware. First of all memory access
is very expensive on recent graphics devices, since GPUs
have only very small caches for the individual threads in
the multiprocessor. Also just read-only memory is cached.
For example the G80 series of GPUs provides 8192 bytes of
cache for textures, which is very small. Since we store our
tree in texture memory, the rays that traverse the tree should
be as coherent as possible, to maximize the cache hit rate.
One limitation of the CUDA architecture is that the dimen-
sions of a texture are limited. Therefore we store our linear
data structures in 2D textures.

For maximizing the coherent number of rays, we use a
concentric map that projects samples from a square to a disc.
See Shirley et al. [SC97] for details on this map. We sample
the square in blocks of size 4×4, use the map to get samples
on a disc and then project the samples onto the hemisphere
above the element. Also note that for maximum efficiency
you should take two such 4× 4 blocks, resulting in 32 rela-
tively coherent rays. This maps best to the CUDA architec-
ture where 32 threads are always running in lock-step in a so

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Arne Schmitz, Markus Tavenrath & Leif Kobbelt / Interactive Global Illumination for Deformable Geometry in CUDA

called warp. In every warp, threads have to follow the same
code-path. Diverging code paths have an impact on runtime.

Another implication of this architecture is that the more
rays are shot in the hemisphere, the higher the ray-
throughput gets. This is because the 4× 4 ray blocks get
more local and more coherent. That is also why packetiz-
ing the rays in a classic sense does not scale well on GPUs.
Coherence of the four border rays of a packet will always
be lower than when traversing all the rays explicitly. Also
splitting packets is very expensive on GPUs, because of the
lock-stepping of the warps. We noticed that on the G80 ar-
chitecture, shooting 16×16 rays per vertex with 4×4 blocks
was a good compromise between total run-time, number of
rays shot per second and total number of links generated.
Figure 2 shows this dependency of throughput to number of
rays per vertex.

Scheduling and Balancing Building the kd-tree and link
generation is run asynchronously. Depending on the scene
complexity we achieve one to five complete global illumina-
tion updates per second, for medium complex scenes. Highly
complex scenes, like the CONFERENCE scene with more
than 100k elements, can be handled with updates to the light-
ing situation around every 0.4 seconds, and full updates in-
cluding dynamic geometry every 12 seconds.

To allow for better performance, we use a load balancing
on the CUDA devices. In a system with two or more CUDA
devices, the individual ray batches take different amount of
time for traversal. Our load balancing scheduler distributes
the ray-batches in such a way, that all installed CUDA de-
vices take the same time to process the batches, based on
their performance in the last batch.

3.3. Updating the Light Source

Although the latency for a complete global illumination up-
date for the whole scene is already quite low in our system,
we achieve very high frame rates for moving light sources.
Similar to Kristensen et al. [KAMJ05] we can interactively
move light sources, but instead of hours to weeks of pre-
computation we can handle many scenes in fractions of a
second, if the geometry of the scene changes. Implicit visi-
bility methods like Dachsbacher et al. [DSDD07] also allow
for interactive light source manipulation, but we still have
a faster turnaround time, if the whole scene changes, plus
we achieve higher frame rates when only the light source is
moving, see Section 5 for more information.

Lightlink Sampling We support up to eight fully dynamic
directional or point light sources, which use cube shadow
maps with adaptive percentage closer filtering for smooth
edges. Also the light sources support full high dynamic
range RGB color, for enhanced flexibility during lighting
design. Using multi-pass rendering it would be possible to
support arbitrary numbers of light-sources, albeit with loss
of performance. Area lights are also easy to implement in

Figure 4: We compute the direct lighting via a simple

OpenGL shader (left), the indirect lighting via our light ex-

change (middle), and the combined image is a sum of the two

first images, computed in the shader (right).

our system, one just has to change the ray origins of the light
samples to cover the surface of the light source.

Whenever a light source is moved, we establish explicit
visibility of the light source with all elements in the scene.
This is done by shooting rays from the light source to the
element. This allows us to compute the geometry and visi-
bility term between both, and we then initialize the radiance
at each vertex. The geometry term is defined as:

G(x,y) =
cosθx cosθy

r2
xy

(2)

Since we only sample the vertices of the mesh, we are
prone to aliasing and undersampling, especially in respect to
the light sources. Therefore we do an oversampling of the
visibility term, by also shooting rays from the lightsource to
selected points on the triangles in the one-ring around the
target vertex. We use a 1:4 subdivision scheme to determine
the additional sampling points.

After determining the geometry term from each light
source to all elements in the scene, we initialize the ele-
ments’ outgoing radiance with the light they received from
the light sources, multiplied by their BRDF.

Radiance Propagation by Gathering After each element
has received its initial outgoing radiance, we start to propa-
gate the radiance through the scene by means of gathering.
We just iterate over all elements, and collect the radiance
from all its links. The radiance is summed to the total in-
coming radiance, weighted by the geometry and visibility
term:

Itotal,x,i+1 = Itotal,x,i +∑
y

Ioutgoing,y ·V (x,y)G(x,y) (3)

The new outgoing radiance of an element is simply the in-
coming radiance from all incoming links x← y multiplied
by the diffuse reflectance fd :

Ioutgoing,x = ∑
{y|x←y}

Ioutgoing,y · fd (4)

One such summing over all elements results in one light
propagation bounce. In most scenes, four iterations result in
a sufficient light distribution. Thus the radiance gathering
itself is one of the cheapest parts of our algorithm.

Since we use a subsampling of the path space, we are

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Arne Schmitz, Markus Tavenrath & Leif Kobbelt / Interactive Global Illumination for Deformable Geometry in CUDA

Figure 5: Left: our method, Middle: Luxrender unbiased

renderer. Right: absolute difference of radiance values. Dif-

ferences are at shadow boundaries. Also under the tea bowl

some light paths were missed by our algorithm.

prone to the same noise artifacts as similar algorithms, like
distributed ray-tracing by Cook et al. [CPC84]. However, in
our case we can easily perform a radiance smoothing step on
the vertices:

Ismooth,v =
1

|N(v)|+1

(

Iv + ∑
vi∈N(v)

Ivi

)

(5)

Where N(v) is the one-ring of vertex v. This eliminates prac-
tically all noise that stems from the path space subsampling.
One has to be careful not to smooth over feature edges, since
there the radiance will probably be non-continuous. So in-
stead of smoothing over N(v), we smooth over N̂(v), which
is defined as:

N̂(v) =
{

vi|vi ∈ N(v)∧nv ·nvi > cosα f

}

(6)

Where α f is a threshold angle for feature edges, which can
be user defined per mesh or per scene. These feature edges
are also used for the direct lighting, to produce sharp edges
on meshes. Note that our work is dependent on the tesse-
lation of the scene, since higher tesselation will allow for a
more accurate resolution of the indirect lighting.

3.4. Rendering

We download the computed total incoming radiance values
from CUDA, and use it as input for our vertex buffer based
mesh rendering. Since our elements coincide with the ren-
dered vertices, this is a one to one mapping.

The surface shading is based on a simple split of the ren-
dering equation into the direct and indirect illumination. The
direct illumination is evaluated by a simple diffuse or glossy
BRDF combined with cube mapped shadow maps for each
light source. The shadow maps are rendered with percentage
closer filtering, which smoothes out any aliasing artifacts.
The indirect radiance is then added to that. Figure 4 shows
how the two parts of the rendering equation are put together.

4. Discussion

The two most important aspects to discuss about a global
illumination system are performance and image quality. In
respect to performance, the scalability of is very important.
Specific timings will be discussed in Section 5, while in this
section we will discuss computational complexity.

Figure 6: Our system is even able to handle large models.

Shown are direct and indirect light (one and four bounces).

4.1. Scalability

One of the big problems of global illumination is, that when
one uses finite element methods, that the problem is equiv-
alent to the n-body problem, as shown by Hanrahan et al.
[HSA91]. This implies that naive solutions will always take
O(n2) to complete, where in the following n will denote
the number of elements in the scene (in our case vertices).
This can be solved for small scenes on current hardware, but
obviously this does not scale well. Using hierarchical ap-
proaches, this can be pushed down to O(n logn) in both time
an space complexity.

Time and Space Complexity Our approach has linear
space complexity, linear time complexity for light exchange
and a log-linear time complexity for visibility and link con-
struction. So for dynamic scenes we need to consider the fol-
lowing costs. First we need to build the kd-tree, which can be
accomplished in tkd = O(n logn) time. The shooting step for
generating the links between elements takes tshoot = O(nC ·
n logn), where nC is the number of sampled directions. Com-
puting the light links takes tlight = O(nL ·n logn) time, where
nL is the number of light sources in the scene. The light ex-
change itself is performed in tradiance = O(nB · nC · n) time,
where nB is the number of bounces. This is the greatest ad-
vantage of our approach compared to other works, since our
method scales linearly with the number of elements in the
scene. Other methods, as shown in the next paragraph, usu-
ally take at least log-linear time. We can now see that com-
puting the whole global illumination solution from scratch
takes

t f ull = tkd + tshoot + tlight + tradiance (7)

= O((1+nC +nL)n logn+nB ·nC ·n) (8)

For medium sized scenes of a few ten-thousand triangles,
we achieve still interactive rates for t f ull . And as discussed
earlier, light updates are much cheaper:

t f ulllight = tlight + tradiance (9)

= O(L ·n logn)+O(nB ·nC ·n) (10)

Scalability Compared With Other Methods In compari-
son, the work by Dachsbacher et al. [DSDD07] is a bit more
difficult to analyze. They also use a discrete set of directions,
for which they produce links. Due to the implicit visibility,
their link structure contains O(n2) links in the worst case, be-
cause bins can contain more than one link. This is dealt with

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Arne Schmitz, Markus Tavenrath & Leif Kobbelt / Interactive Global Illumination for Deformable Geometry in CUDA

by using a link hierarchy. The authors do not state an accu-
rate value for the space complexity, but due to the hierarchy
it might be Ω(n logn). The complexity of constructing the
link structure is completely unknown, but their initial linking
phase takes 13s for the oriental scene, which is equivalent to
our TEAROOM scene. Our algorithm takes t f ull = 1.1s, and
renders the scene with 65 frames per second, compared to
7.5 fps in the work of Dachsbacher et al. [DSDD07]. In both
cases full indirect lighting is update in each frame. Their net
number of links in this scene is 776k, while ours is 2019k.
But still our light exchange is computed much faster. We
need 6ms in total, while their algorithm takes 111ms. The
tests were performed on similar machines, albeit our CPU
ran at 2.4GHz, versus 3.0GHz. In both cases the graphics
cards used were GeForce 8800 GTX.

A second work that produces similar results as our ap-
proach is [DKTS07]. They use implicit visibility, which is
computed during construction of a link hierarchy. They sup-
port only diffuse indirect illumination and dynamic models.
The complexity of their method is unclear. They state an ap-
proximate complexity of O(n logn). When comparing both
systems, we noticed, that our approach can compete with
theirs. However they only cite timings for small scenes. For
a 2670 vertex scene their approach achieves 7.53 fps. We
achieve 6.3 GI updates per second on a scene with the same
complexity. However it has to be noted, that their approach
uses only one bounce of indirect illumination. More bounces
are more costly than in our approach.

4.2. Image Quality

Since we are sampling radiance at vertices, the computed
values are interpolated over the surface by the graphics card.
A higher tesselation will result in a more accurate interpola-
tion. Also, the more rays are used at each vertex, the better
the radiance estimate will be.

A very important aspect of our system is that it handles
indirect illumination very well. Since the light exchange is
computed so rapidly, the computation of many light bounces
is possible. In scenes like TEAROOM large parts of the scene
are illuminated indirectly.

For proof of a good convergence of our algorithm, we
compared our method with an unbiased path tracer called
Luxrender, which is based on the well known PBRT by Pharr
et al [PH04]. As can be seen from figure 5 our method con-
verges to a correct solution. The main differences are mostly
the shadow boundaries, which is due to the usage of shadow
maps, but also some difficult light paths may not be found by
our algorithm. But the absolute difference in radiance val-
ues is marginal. The reference solution was computed in 24
hours time with approximately 10,000 samples per pixel.

5. Results

We have mainly used five different scenes to test our system.
The geometric complexity of the scenes, and the complexity

Scene Vtx kd-nodes Links·106

·103
·103 MB raw cmp

COLORLAMP 1.6 1037 0.4 3.6 0.5
TORSO 7.1 17.5 1.7 3.4 0.8

TEAROOM 11.9 14.2 1.5 6.7 2.0
IPHI 76.5 109 9.4 42 12

CONFERENCE 122.8 297 30 73 14

Table 1: The scenes used for testing. The number of links is

shown in raw, and compressed form.

of the resulting kd-trees are listed in Table 1. All scenes were
built from scratch, except for the import of the more complex
meshes.

A detailed performance comparison of the test scenes can
be found in Table 2. There we used two systems to test if our
system scales well with the number of GPUs in the system.
As can be seen from the table, the number of rays shot and
the waiting time for the first frame (which equals t f ull , see
section 4.1) directly reflects the number of GPUs installed.
Ray throughput almost doubles, for the general link genera-
tion. Especially note that the TORSO scene is fully dynamic
and achieves very high frame rates. We also ran our algo-
rithm with an emulated 4 GPUs, which worked well. True
benchmarks on a 4 GPU machine will be done in the future.

Our results show that we render faster than competing
methods and we can handle models one magnitude larger
than said methods (see Figure 6). Furthermore we showed
that our system is scalable with future GPU and CPU gener-
ations.

6. Conclusion

We have shown that with the CUDA framework, fast and
scalable diffuse global illumination in deformable scenes
can be computed. Our work improves the possible perfor-
mance especially for interactive relighting of diffuse scenes.

The next step will be to further reduce the number of links
that are needed, for example by using a hierarchy. We are
currently working on support for glossy indirect illumina-
tion, which will be implemented shortly.

The current implementation renders only point lights, di-
rected or omnidirectional, with filtered cube shadow maps.
Area lights are possible and are intended as future work.

Furthermore we want to evaluate how the temporal ap-
pearance of the asynchronous global illumination can be im-
proved. For fast moving objects the indirect illumination in-
formation might be too much out of date and lead to unpleas-
ant visual artifacts. This will be a focus of improvement.

Last, we also want to see how well our approach works
on other parallel systems, like the Cell platform. The much
bigger local memory of the Cell will probably allow for more
complex operations, although the Cell has much fewer cores
than a typical CUDA device.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Arne Schmitz, Markus Tavenrath & Leif Kobbelt / Interactive Global Illumination for Deformable Geometry in CUDA

Scene Sys kd-Tree Gen. Links Light links Bounces First FPS
ms ms 103 rays/s ms 103 rays/s ms frame

COLORLAMP A 8 833 1930 4 393 3 0.8s 54.0
B 9 433 3709 5 314 2 0.5s 42.3

TORSO A 111 413 4420 15 476 4 0.5s 65.0
B 78 256 7121 19 397 4 0.4s 70.0

TEAROOM A 71 680 4472 13 915 6 0.8s 65.0
B 53 400 7595 15 793 6 0.5s 75.0

IPHI A 35 11382 1721 92 832 54 12.4s 12.5
B 47 5422 3614 103 746 56 7.9s 12.6

CONFERENCE A 173 21606 1454 472 260 57 25.2s 10.0
B 218 11403 2755 516 207 61 14.7s 11.5

Table 2: This table shows the performance of systems A) Core2Duo 2.4 GHz, GeForce 8800 Ultra, B) Core2Quad 2.4 GHz,

Dual GeForce 8800 Ultra. The time for the first frame, which equals the time for a full global illumination update, is reduced

significantly, because the ray throughput almost doubles. All scenes use 3 bounces of indirect light.

Acknowledgements

Thanks to Bassam Kurdali for the Mancandy model used in
the TORSO scene.

References

[CPC84] COOK R. L., PORTER T., CARPENTER L.: Distributed
ray tracing. SIGGRAPH Comput. Graph. 18, 3 (1984), 137–145.

[DBB06] DUTRÉ P., BALA K., BEKAERT P.: Advanced Global

Illumination, 2nd Edition. A K Peters Ltd., 2006.

[DKTS07] DONG Z., KAUTZ J., THEOBALT C., SEIDEL H.-P.:
Interactive global illumination using implicit visibility. In Pacific

Conference on Computer Graphics and Applications (Washing-
ton, DC, USA, 2007), IEEE Computer Society.

[DSDD07] DACHSBACHER C., STAMMINGER M., DRETTAKIS

G., DURAND F.: Implicit Visibility and Antiradiance for Interac-
tive Global Illumination. ACM Transactions on Graphics (SIG-

GRAPH) 26, 3 (August 2007).

[GKBP05] GAUTRON P., KŘIVÁNEK J., BOUATOUCH K., PAT-
TANAIK S.: Radiance cache splatting: a GPU-friendly global
illumination algorithm. In SIGGRAPH ’05 (2005), ACM, p. 36.

[HBHS05] HAVRAN V., BITTNER J., HERZOG R., SEIDEL H.-
P.: Ray maps for global illumination. In EGSR (2005).

[HDKS00] HEIDRICH W., DAUBERT K., KAUTZ J., SEIDEL H.-
P.: Illuminating micro geometry based on precomputed visibility.
In SIGGRAPH ’00 (2000), ACM, pp. 455–464.

[HSA91] HANRAHAN P., SALZMAN D., AUPPERLE L.: A rapid
hierarchical radiosity algorithm. In SIGGRAPH ’91 (New York,
NY, USA, 1991), ACM, pp. 197–206.

[HSHH07] HORN D. R., SUGERMAN J., HOUSTON M., HAN-
RAHAN P.: Interactive k-d tree GPU raytracing. In I3D ’07 (New
York, NY, USA, 2007), ACM, pp. 167–174.

[KAMJ05] KRISTENSEN A. W., AKENINE-MÖLLER T.,
JENSEN H. W.: Precomputed local radiance transfer for
real-time lighting design. ACM Trans. Graph. 24, 3 (2005).

[KTHS06] KONTKANEN J., TURQUIN E., HOLZSCHUCH N.,
SILLION F.: Wavelet radiance transport for interactive indirect
lighting. In Rendering Techniques 2006 (EGSR) (jun 2006).

[MB90] MACDONALD D. J., BOOTH K. S.: Heuristics for ray
tracing using space subdivision. Vis. Comput. 6, 3 (1990).

[NVI07] NVIDIA CORPORATION: NVIDIA CUDA Program-

ming Guide, 2007.

[PGSS07] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK

P.: Stackless kd-tree traversal for high performance GPU ray
tracing. Computer Graphics Forum 26, 3 (Sept. 2007).

[PH04] PHARR M., HUMPHREYS G.: Physically Based Render-

ing: From Theory to Implementation. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2004.

[SC97] SHIRLEY P., CHIU K.: A low distortion map between
disk and square. journal of graphics tools 2, 3 (1997), 45–52.

[SLS05] SLOAN P.-P., LUNA B., SNYDER J.: Local, deformable
precomputed radiance transfer. ACM Trans. Graph. 24, 3 (2005).

[SSK07] SHEVTSOV M., SOUPIKOV A., KAPUSTIN A.: Highly
Parallel Fast KD-tree Construction for Interactive Ray Tracing of
Dynamic Scenes. Computer Graphics Forum 26, 3 (Sep 2007).

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray Tracing De-
formable Scenes using Dynamic Bounding Volume Hierarchies.
ACM Transactions on Graphics 26, 1 (2007).

[WH] WALD I., HAVRAN V.: On building fast kd-trees for ray
tracing, and on doing that in O(N log N). In Interactive Ray

Tracing 2006.

[WK06] WÄCHTER C., KELLER A.: Instant Ray Tracing: The
Bounding Interval Hierarchy. In Symposium on Rendering

(2006), pp. 139–149.

[WRC] WARD G. J., RUBINSTEIN F. M., CLEAR R. D.: A ray
tracing solution for diffuse interreflection. In SIGGRAPH ’88,
ACM.

[YIDN07] YUE Y., IWASAKI K., DOBASHI Y., NISHITA T.:
Global illumination for interactive lighting design using light
path pre-computation and hierarchical histogram estimation. Pa-

cific Graphics (2007), 87–98.

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-Time
KD-tree Construction on Graphics Hardware. Technical Report

(2008).

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

