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Abstract

The most important concepts for the handling and stor-
age of freeform shapes in geometry processing applications
are parametric representations and volumetric representa-
tions. Both have their specific advantages and drawbacks.
While the algebraic complexity of volumetric representa-
tions S = {(x, y, z) | f(x, y, z) = 0} is independent from
the shape complexity, the domain Ω of a parametric repre-
sentation f : Ω → S usually has to have the same structure
as the surface S itself (which sometimes makes it necessary
to update the domain when the surface is modified). On the
other hand, the topology of a parametrically defined surface
can be controlled explicitly while in a volumetric represen-
tation, the surface topology can change accidentally dur-
ing deformation. A volumetric representation reduces dis-
tance queries or inside/outside tests to mere function evalu-
ations but the geodesic neighborhood relation between sur-
face points is difficult to resolve. As a consequence, it seems
promising to combine parametric and volumetric represen-
tations to effectively exploit both advantages.

In this talk, a number of applications is presented and
discussed where such a combination leads to efficient and
numerically stable algorithms for the solution of various
geometry processing tasks. These applications include sur-
face remeshing, mesh fairing, global error control for mesh
decimation and smoothing, and topology control for level-
set surfaces.

1. Introduction

The field of geometry processing deals with the genera-
tion of and the efficient operation on all kinds of geometry
representations. The design of efficient algorithms always
has to be accompanied by the design of suitable data rep-
resentations. Since the data to be processed are mainly ge-
ometric objects, each specific problem requires the “right”
shape representation to be chosen in order to enable effi-
cient access to the relevant information. In this context there

are two major classes of surface representations: paramet-
ric surfaces and volumetric surfaces.

A parametric surface is an explicit representation, usu-
ally given by a function f : Ω ⊂ IR2 → S ⊂ IR3 that
maps a two–dimensional parameter domain Ω into 3-space.
In contrast, a volumetric surface is implicitly defined to
be the zero–set of a scalar function f : IR3 → IR, i.e.
S = {(x, y, z) ∈ IR3 | f(x, y, z) = 0}. From an abstract
point of view, the first one can be considered the range of a
function, while the latter one is defined to be the kernel of a
function. Both representations have their own strengths and
weaknesses, as we will see in the next sections.

1.1. Explicit Surfaces

An explicit parameterization f enables the reduction
of several three–dimensional problems on the surface S
to two–dimensional problems in the parameter domain Ω.
For instance, points on the surface can easily be gener-
ated by simple function evaluations of f(u, v). Neighbor-
hood queries on the surface S reduce to finding neighboring
points in the parameter domain Ω. If the metrics in Ω and S
are sufficiently similar we can therefore generate triangula-
tions of S by lifting a 2D Delaunay triangulation [31] of Ω
into 3–space.

Generating such parameterizations, on the other hand,
can be quite hard and is an active area of research [9, 1,
15, 27], since the parameter domain Ω has to match the
topological and metric structure of the surface S. When
changing the shape S it may even be necessary to update the
parameterization accordingly in order to reflect the respec-
tive changes of the underlying geometry: a low–distortion
parameterization f requires the metrics in S and Ω to be
similar and hence we have to avoid or adapt to excessive
stretching.

However, since the surface S is the range of the param-
eterization f , the topology of the surface can explicitly be
controlled. In contrast, there is no easy way to control the
geometry in the embedded space, like e.g., preventing the
surface from self–intersecting.



Usual data representations for explicit surfaces are piece-
wise linear polygonal meshes [7, 6] or higher order NURBS
surfaces [30]. In both cases the storage complexity directly
correlates with the geometric complexity of the surface S
itself.

1.2. Implicit Surfaces

Since an implicit surface is defined to be the kernel of a
function f : IR3 → IR, geometric inside/outside queries for
closed surfaces simplify to function evaluations of f and
checking the sign of the resulting value. The function f is
not uniquely determined, but the most common and most
natural implicit representation is the so called signed dis-
tance function which maps each point (x, y, z) ∈ IR3 to its
signed distance from the surface S. Negative function val-
ues designate points inside the object and positive values
points outside the surface. This representation simplifies
distance computations to simple function evaluations.

Implicit surfaces do not provide any means of parame-
terization. Hence, it is for instance almost impossible to
consistently paste textures onto evolving implicit surfaces.
However, they allow for the design of algorithms that are
free of parameterization artifacts, since they are only based
on intrinsic geometric properties of the surface.

One of the strengths of implicit surfaces is that they can
easily change their topology, an important property in the
context of constructive solid geometry. Unfortunately, this
is also one of the main problems since there is no mech-
anism to prevent the topology from changing accidentally,
i.e. to prevent the surface from merging or splitting, respec-
tively. On the other hand since an implicit surface is a level–
set of a potential function, geometric self–intersections can-
not occur.

Because the parameter domain of the implicit function
is the whole 3–space, the function f is usually restricted
to some bounding box around the surface. The most basic
representation is a uniform scalar 3D grid fijk of sampled
values of f [26]. Function values in the interior of voxels
are obtained by tri–linear interpolation. For this basic data
structure the memory consumption grows cubically if we
increase the precision by reducing the edge length of grid
voxels.

Since the signed distance values are most important in
the vicinity of the surface we can use a higher sampling rate
only in these regions in order to achieve a more memory
efficient data structure. Hence, instead of a uniform 3D grid
an adaptive octree can be used to hold the sampled values
[32]. Compared to the uniform grid this lowers the storage
complexity from cubic to quadratic.

If we additionally restrict the local refinement to those
cells where the tri–linear interpolant deviates more than a
prescribed tolerance from the actual distance field, the re-

sulting approximation adapts to the locality of the surface
as well as to its shape [13]. Since extreme refinement is
only necessary in regions of high surface curvature, this ap-
proach reduces the storage complexity even further and re-
sults in a memory consumption comparable to explicit rep-
resentations.

Restricting the surface deformation to the direction of
the local surface normal leads to the so called level set sur-
faces [34, 29]. Since the direction of motion is fixed, the
surface evolution is fully determined by providing a scalar
speed function, defining the amount of movement for each
surface point at a certain time. Level set surfaces can be effi-
ciently implementated using narrow–band or fast–marching
techniques [33].

2. Conversion

As we have discussed in the last section, we should
choose the suitable shape representation depending on the
given problem if we are aiming at efficient algorithms. This
requires conversion methods between explicit and implicit
surface representations.

Since both kinds of representations are usually finite
samplings, like e.g. polygonal meshes in the explicit case
and uniform/adaptive grids in the implicit case, each con-
version corresponds to a resampling step. Therefore we
have to minimize the loss of information for these conver-
sion routines.

An explicit surface can be constructed from a volumetric
representation by extracting the zero–level iso–surface of
the corresponding implicit function. The standard method
for this contouring task is the Marching Cubes (MC) algo-
rithm [26]. Since applying the MC algorithm corresponds
to a regular resamping of f , high–frequency geometric de-
tails like, e.g., sharp edges or corners, will not be captured.

A refinement of the underlying 3D grid is not capable
of solving this problem: in the vicinity of sharp features
the surface is not differentiable, therefore the approximation
power breaks down from quadratic to linear, resulting in
a point–wise convergent surface with potentially diverging
normals [22, 4]. However, the additional use of gradient
information enables the robust detection and reconstruction
of sharp features [22, 18], thereby minimizing the loss of
information.

The conversion from explicit to implicit representation
amounts to the generation of the signed distance function
[20, 36, 38]. This can be done by voxelization, by fast–
marching methods [33], or even by using graphics hardware
[19]. To avoid alias–artifacts for a later back–conversion the
respective gradient information should also be stored.



3. Applications

In this section we present a set of applications that ex-
ploit the strengths of both surface representations by choos-
ing the most suitable one depending on the problem, leading
to more efficient and even more robust geometry processing
algorithms. We will also show that even better results can
be achieved if we do not restrict to conversions between the
different surface representations, but instead combine and
use them simultaneously.

3.1. Remeshing

Polygonal meshes can be considered as piecewise linear
parameterizations that represent each point in the interior
of a triangle by a barycentric combination of its vertices.
This kind of parameterization is competely defined by the
distribution of vertices on S and their connectivity. We can
rate the numerical quality of such a parameterization f by
the shape of the respective triangles on the surface S.

When using triangle meshes in numerical simulations,
we have to guarantee that no degenerate faces are present
since they have, e.g., no well defined normal vectors. Un-
fortunately, many tesselation algorithms in today’s CAD
systems generate this kind of meshes with sometimes ex-
tremely bad triangle quality. Therefore we have to find a
high–quality tesselation, i.e. a new parameterization f

∗, for
a geometry S given by a low quality parameterization f , a
task referred to as remeshing [9, 1, 15, 27].

Trying to perform the remeshing on the surface directly
can be quite hard and special care has to be taken to end up
with a numerically robust algorithm capable of handling all
kinds of geometric as well as topological degeneracies [5].

Since we are only interested in the geometry of the given
surface, we avoid all difficulties that emerge from the bad
parameterization f by converting the mesh to an implicit
representation. Since this only requires distance computa-
tions, it is not affected by degenerate triangles. The result-
ing implicit representation only contains relevant geometric
information.

A new parameterization can now be generated by a sec-
ond conversion step back from the implicit to an explicit
representation, e.g. by the methods proposed in [22, 18].
The resulting polygonal mesh is an approximation to the
original mesh and in addition provides a tesselation of
higher quality. The approximation error can easily be
bounded by choosing a sufficient grid resolution for the im-
plicit representation.

This double conversion results in a fully automatic, nu-
merically robust remeshing algorithm that is feature pre-
serving and has bounded approximation error. The resulting
meshes are guaranteed to be proper 2–manifold surfaces.

3.2. Mesh Fairing

Real world datasets acquired by, e.g., range scanning,
medical imaging methods, or other physical measurements
ususally contain a certain amount of measurement noise.
Removing those high–frequency errors is usually referred
to as mesh smoothing or mesh fairing.

No matter whether we follow the signal–processing ap-
proach [35], or an energy minimization method [21], or a
PDE based flow technique [10], the standard fairing algo-
rithm ends up to be some variant of Laplacian smoothing.
This operator acts on the surface by taking a vertex and its
one–ring neighbors into account. Unfortunately, the rate
of convergence locally depends on the (ratio of) local edge
lengths, leading to a significantly slower surface evolution
in regions of higher sampling density.

Unless proper boundary constraints are imposed, there is
always a trivial solution to the resulting system of equations,
i.e. the mesh will eventually collapse to a single point. Even
after a small time step one can observe a noticable shrinkage
of the surface. Therefore different techniques have been
proposed to prevent shrinkage by the use of (approximate)
volume preservation [35, 10, 25].

If we use an implicit representation instead, we can de-
fine a level set smoothing operator that is purely based on
the surface geometry [33]. The level set approach will pro-
vide us with curvature dependent or constant speed func-
tions for the surface evolution, corresponding to mean cur-
vature flow or dilation/erosion of the surface. Since all
geometric entities are computed on a regular grid this ap-
proach is free of parameterization artifacts. In addition,
exact volume preservation can be achieved by a correction
term added to the speed function.

As in the last example, the final explicit surface is gener-
ated by a suitable contouring algorithm. Since the resulting
surface is supposed to be smooth, there is no need to use a
feature sensitive method, hence plain MC will be sufficient
in this case.

3.3. Global Error Control

Most engineering applications require the processed sur-
face to stay within a prescribed error tolerance. In the con-
text of mesh decimation several highly efficient local error
measures have been proposed [14, 24]. In contrast, com-
puting the exact global error between two surfaces or con-
structing exact tolerance volumes/envelopes, respectively,
is computationally very expensive, because the costs de-
pend on the complexity of the surface shape [23, 8, 16].

An implicit representation based on the signed distance
function provides the respective distance computations for
free since they are just function evaluations, i.e. the com-
plexity just depends on the approximation tolerance and



no longer on the shape complexity. Therefore it seems to
be promising to combine an explicit mesh processing algo-
rithm with an implicit global error representation. This has
been done by Zelinka and Garland [39] using a uniform grid
and a piecewise constant approximation of the implicit dis-
tance function.

Better approximation power and less memory consump-
tion can be achieved with an adaptive grid and tri–linear ap-
proximation [13]. Switching from this piecewise tri–linear
C0 representation to a piecewise linear C−1 representation
preserves the same asymptotic approximation properties,
but the additional degrees of freedom lead to a better ap-
proximation with lower memory consumption [37].

The combination of an explicit decimation scheme with
this implicit representation of the signed distance field pro-
vides high quality results satisfying a global approximation
error at computational costs comparable to methods using
local error estimates.

3.4. Level Set Surfaces with Topology Control

Although level set surfaces are already known for some
time, they have been getting increasingly popular in the
last few years [34, 29, 28]. In medical imaging applica-
tions they are used for segmentation and reconstruction of
organic structures. In this context a certain a–priori knowl-
edge about the structure, i.e. the topology, of the surface to
be generated may exist, e.g. when reconstructing a cortical
surface from MRT scans. But also in other applications we
may have to prescribe the topology of the implicit surface
or we at least want to prevent the topology from changing
during the surface evolution.

Because of the lacking parameterization, implicit repre-
sentations provide no means of topology control. Han et al.
[17] overcome this problem by modifying the update rules
for the level set computation in order to prevent the topol-
ogy from changing.

We propose to combine the topology preserving proper-
ties of parametric surfaces with the parameterization–free
implicit surface representation [2, 3]. The topology control
is achieved by placing samples on the edges of the voxel
grid whenever the surface is about to change its topology,
e.g. when the surface is touching itself. Since these so
called cuts are placed at the exact location of the critical
points on the respective edges, we achieve sub–voxel accu-
racy for the boundary interface reconstruction.

These cuts are actually surface samples and hence can
be considered as explicit surface information. This integra-
tion of explicit information into the implicit level set com-
putation guarantees topology preserving surface evolutions,
while keeping the algorithmic structure almost the same.

In a similar sense Enright et al. [12, 11] used particles
as some kind of explicit representation in order to preserve
surface characteristics and alleviate loss of mass during the
deformation.

4. Conclusion

Both explicit and implicit surface representations have
their own advantages and drawbacks. We have shown that
exploiting this fact by choosing the “better” suited of these
two representations depending on a specific problem leads
to more robust and more efficient geometry processing al-
gorithms.

Since each conversion between parametric and volumet-
ric representations corresponds to a resampling of the re-
spective explicit or implicit function, care has to be taken
not to lose relevant high–frequency shape information.

Even better results can be achieved by not just convert-
ing between but also combining the two different represen-
tations and using them simultaneously.

We outlined a set of applications based on such a combi-
nation of implicit and explicit surface information, showing
geometric algorithms that are free of parameterization ar-
tifacts and that have enhanced computational efficieny for
global error bounds. This approach also provides a topol-
ogy preserving mechanism for level set surfaces.
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