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Abstract

Extracting isosurfaces from volumetric datasets is an es-
sential step for indirect volume rendering algorithms. For
physically measured data like it is used, e.g. in medical
imaging applications one often introduces topological er-
rors such as small handles that stem from measurement in-
accuracy and cavities that are generated by tight folds of
an organ. During isosurface extraction these measurement
errors result in a surface whose genus is much higher than
that of the actual surface. In many cases however, the topo-
logical type of the object under consideration is known be-
forehand, e.g., the cortex of a human brain is always homeo-
morphic to a sphere. By using topology preserving morpho-
logical operators we can exploit this knowledge to gradu-
ally dilate an initial set of voxels with correct topology until
it fits the target isosurface. This approach avoids the forma-
tion of handles and cavities and guarantees a topologically
correct reconstruction of the object’s surface.

Keywords: isosurface extraction, digital topology, discrete
deformation retraction, topology preservation

1 Introduction

Volumetric datasets are usually given by scalar values (=
gray values, density values) being assigned to the vertices
of a regular voxel grid. In order to effectively visualize and
process the geometric information which is implicitly rep-
resented by a volumetric dataset, we often have to extract
explicit surface information.

While the spatial topology of the regular voxel grid is
very simple, the manifold topology of the extracted isosur-
faces can be very complex. In practice it turns out that most
of the topological complexity of isosurfaces (e.g., small
handles and channels) is due to measurement inaccuracies
and noise in the scalar data. For example, when extracting
the cortex of a human brain (which is known to be homeo-
morphic to a sphere) we often find erroneous channels and
disconnected components. These effects are caused by the
fact that the measuring resolution of a CT or MRT scanner
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it usually not fine enough to properly distinguish the tissue
of nearby sulci and gyri (ridges).

The goal of this paper is to derive an algorithm that is
able to extract isosurfaces with controlled topologies. The
idea is to find an initial estimate of the final surface which
can be guaranteed to have a desired topology. Then a topol-
ogy preserving growing scheme is applied that morphs the
initial estimate into the final result. The topology preserva-
tion will prevent the generation of handles such that the final
isosurface might touch itself but without actually changing
its manifold topology.

There are two fundamentally different concepts for ac-
cessing and modifying isosurface information represented
by a volumetric dataset.

The first one is based on the pure topology of the under-
lying voxel grid and mostly ignores the scalar data associ-
ated with the voxels. Since the neighborhood of each voxel
is regular we do not have to consider topological special
cases. The well-known morphological operators are an ex-
ample for operators which use spatial grid neighborhoods
to determine the status of a voxel. In our algorithm we
use morphological operations for the incremental growing
procedure to guarantee that the extracted surface does not
change its topology – even if the surface touches itself dur-
ing the growing process.

Notice that the neighborhood relation in the voxel grid
is defined in terms of Euclidian distances while the neigh-
borhood relation within an isosurface is defined in terms
of geodesic distance. This makes it much more difficult to
detect topology changes on manifolds since geometrically
nearby surface points can have a large geodesic distance.

The second concept considers the volumetric dataset as
a scalar-valued function defined in continuous 3-space by
interpolating the grid values. Through the implicit function
theorem, this scalar field defines the local geometry of all
its isosurfaces. Computing the derivative of the scalar field
gives us the gradient vector which is the normal vector to
the isosurface. The gradient vector is used in our algorithm
to determine the direction in which the growing procedure
should continue. The gradient sometimes appears in dis-
guised form, i.e., when we morph an isosurface

S(v) = {(x, y, z)|f(x, y, z) = v}
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into an isosurface S(v±ε) we, in principle, shift all surface
points in the direction of the gradient.

In our surface extraction algorithm we combine the two
concepts by exploiting the advantages of both. We grow the
initial surface by adding one voxel at a time. The scalar
field data and its gradient determine where to add the next
voxel while the topological properties of a morphological
operator determine if a specific voxel can be added without
changing the resulting surface topology.

1.1 Overview

Our approach of inflating an isosurface is governed by
two principles: From a topologist’s point of view, we have
to guarantee that the genus of the surface does not change
during inflation — a behavior that can be described con-
veniently by the concept of deformation retractions known
from algebraic topology [6]. The goal of Section 2 is to
carry over this notion from the continuous case to the dis-
crete setting of voxel spaces. A physician on the other hand
might rather be interested in the underlying gradient forces
that control the expansion rate of the surface. Modeling
this in the discrete setting will be the topic of Section 3. In
Section 4 we demonstrate our topology preserving inflation
process by applying it to the problem of reconstructing the
surface of a brain from a set of MRT scans.

1.2 Related Work

Topology: Discrete topological spaces where studied since
the beginning of the last century [15]. It was, however, the
advent of digital computers and their inherent inability to
handle continuous data that intensified the interest in digital
topology [17]. Especially in the context of image process-
ing numerous approaches have been presented to define a
digital analog of the topology of the Euclidean space. An
overview can be found e.g. in [8]. In particular the problem
of characterizing simple points, i.e. points that can be re-
moved without changing an objects’ topology, has received
a great deal of attention, see e.g. [18, 12, 4, 11].
Medical imaging: The reconstruction of surfaces from
medical image data has received a great deal of attention
in recent years. Morphological operators were applied to
segment the voxel data [7, 21, 20]. In order to get a topo-
logically correct reconstruction of the surface of an organ,
most methods start out with a surface of known topology
and then shrink/inflate it to match a given shape [3, 14, 2].
Kriegeskorte and Goebel [9] describe an algorithm that is
very similar to ours. However, they use a different topo-
logical framework and also they do not account for gradient
information in the data. As a consequence they have less
control on the optimal placement of the cuts that remove
erroneous handles.

Surface reconstruction: Meshes that are reconstructed
from range data by volumetric methods often suffer from
topological noise due to mis-registrations of the scans [1].
Guskov et al. [5] propose a local wave front traversal al-
gorithm that identifies and removes the handles from the
mesh. This approach differs from ours in that it removes the
handles after extraction of the surface while our approach
works directly on the voxel set.

2 Topology

2.1 Topological background

Our basic elements s ∈ Z
3 are called voxels. Voxels

might either be thought of as uniform sample points of a
scalar field or as unit cubic cells centered on the integer
grid. Subsets S ⊂ Z

3 are called voxel sets. We will as-
sume that all voxel sets are bounded, i.e. |S| < ∞. Voxels
s ∈ S are called solid, voxels in Z

3 \ S are called empty.
Two solid voxels s, t ∈ S are called neighbors, s ∼s t,
if ||s − t||∞ = 1. Two empty voxels a,b ∈ Z

3 \ S are
called neighbors, a ∼e b, if ||a − b||1 = 1. As each solid
voxel can have up to 26 neighbors, ∼s is often called the
26-neighborhood relation. Analogously ∼e is called the 6-
neighborhood relation (Figure 1). It is equally possible to
consider the dual case, namely to use the 6-neighborhood
relation for solid voxels and the 26-neighborhood relation
for the empty voxels. However, for the sake of the simplic-
ity of the exposition, we stick to the first definition.

Figure 1. Different voxel neighborhood re-
lations. Left: Vertex- or 26-neighborhood.
Right: Face- or 6-neighborhood.

Let ε ≥ 0. We define the ε-embedding Rε(s) ⊂ R
3 of a

solid voxel s as

Rε(s) =

{

x ∈ R
3 : ||x − s||∞ ≤

1

2
+ ε

}

and the ε-embedding Rε(S) ⊂ R
3 of S as the union

Rε(S) =
⋃

s∈S

R(s)

Intuitively this means that we center a cube of edge length
1 + 2ε at each solid voxel s ∈ S. Note that this definition
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of Rε nicely matches the definition of the neighborhood re-
lation ∼s, since

s ∼s t ⇔ Rε(s) ∩ Rε(t) 6= ∅.

In particular this demonstrates that ∼s and ∼e are compat-
ible, i.e. each vertex (edge,face) is non-ambiguously as-
signed to be either solid or empty.

Figure 2. Singular edges and vertices are re-
moved by scaling each voxel by a factor of
1 + ε about its center.

Finally, we associate a 2-manifold ∂εS to each voxel set S

by setting
∂εS := ∂Rε(S)

If 0 < ε < 1
2 the surface ∂εS is a regular 2-manifold, in par-

ticular, there are no singular points or singular edges (Fig-
ure 2).

2.2 Euler characteristic

In the following we associate an Euler characteristic with
a voxel set S. First, we note, that a single voxel R(s) can
be viewed as a finite cell complex C(s) consisting of 1 cube
(3-cell), 6 quadrangles (2-cells) , 12 edges (1-cells) and 8
vertices (0-cells) as depicted in Figure 3.

Figure 3. Decomposition of a voxel into a cell
complex.

Analogously, we can can represent R(S) as a finite cell
complex C(S) defined by

C(S) =
⋃

s∈S

C(s)

It is well known that the Euler characteristic χ of a cell com-
plex C is the number of even dimensional cells minus the
number of odd dimensional cells [6]. Hence we define

χ(S) := n0 − n1 + n2 − n3

where ni is the number of i-cells (i = 0, 1, 2, 3) of C(S).
Examples of this computation are shown in Figure 4.

Figure 4. Computing the Euler characteristic
of a voxel set. The left configuration is home-
omorphic to a sphere, χ = 18−31+17−3 = 1.
The right configuration is homeomorphic to a
torus, χ = 26− 46 + 24− 4 = 0.

Implementation note
To efficiently compute the Euler characteristic of a voxel set
S, we exploit the fact, that χ is additive, i.e.

χ(S) =
∑

a∈Z3

χ
(

S ∩ (a + [0, 1)3)
)

Each term χ(S∩ (a+[1, 0)3)) in the sum above is uniquely
determined by the status of the 8 voxels at positions a, a +
(1, 0, 0), . . . , a + (1, 1, 1) and can conveniently be precom-
puted in a lookup table of size 256 (Figure 5). This is a very
important observation since it allows us to efficiently de-
tect topology changes caused by incrementally setting one
voxel to solid. Alternatively, the local configuration around
a voxel can be coded in a binary decision diagram , see
e.g. [16].

2.3 Minimally different voxel sets

In this section we define what it means for two voxel sets
S and T to be only minimally different from each other.
We will use this notion of “closeness” in the next section to
carry over continuous transformations to the discrete setting
of voxel spaces.

Obviously, a necessary condition for S and T to be sim-
ilar to each other is that they differ by at most one voxel s,
i.e.

S = T ∪ {s} or T = S ∪ {s}.

Without loss of generality, we assume in the following that
S ∪ {s} = T . By this definition alone we cannot distin-
guish voxel sets of different Euler characteristics. Hence
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Figure 5. Computing the Euler characteris-
tic of a voxel set can be simplified by us-
ing a lookup table. Each entry is determined
by the status of a 2 × 2 × 2 block of vox-
els. To compute the entry, we count the
fractional contributions of each of the inter-
secting cell complexes. On the left the two
solid voxels jointly contribute 1 vertex, 5 half–
edges, 6 quarter–faces and 2 eigth–cubes,
hence χ = 1 − 5

2 + 6
4 − 2

8 = − 1
4 . For the

right configuration we compute analogously
χ = 1 − 5

2 + 7
4 − 3

8 = − 1
8 .

we additionally require, that

χ(S) = χ(T )

Still this is not sufficient to prevent unwanted changes as
is demonstrated in Figure 6. In this case the insertion of the
center voxel at the same time removes and creates a handle,
the change ∆χ of the Euler characteristic is

∆χ = 0 + 5 − 4 − 1 = 0.

To detect such undesired topology changes, we consider the
problem on a sub-voxel scale. For this we conceptually sub-
divide each voxel s into 8 sub-voxels s1, . . . , sn. Then we
define S and T to be mimimally different, S ≈ T if there
exists a permutation π, such that

χ(S) = χ(S ∪ {sπ(1)})

= χ(S ∪ {sπ(1), sπ(1)})

= · · ·

= χ(S ∪ {sπ(1), · · · , sπ(8)})

= χ(T )

Implementation note Note that the choice of π is not
unique, hence any such π will do. In our implementation
we greedily add subvoxels si as long as χ does not change.
If all subvoxels si can be added this way, we have found a
suitable permutation π and hence proved that S ≈ T .

2.4 Discrete deformation retraction

In this section we carry over the notion of a deformation
retraction from the continuous case considered in algebraic
topology to the discrete setting of voxel spaces.

Figure 6. Discrete deformation retraction:
The objects at top left and right are very sim-
ilar to each other: They differ by only one
voxel and they are homeomorphic. However,
there is no deformation retraction that contin-
uously transforms the left object into the right
one. To model this in the discrete setting we
split each voxel into 8 subvoxels (bottom left).
Then we try to find a permutation π such that
the successive removal of sπ(1), . . . , sπ(n) does
not change the Euler characteristic of the set.

A deformation retraction of a topological space X onto
a subspace Y ⊂ X is a map

f : X × [0, 1] → Y

(x, t) 7→ f(x, t) =: ft(x)

such that the following properties hold:

1. f0 ≡ idX , f1(X) = Y and ft|Y ≡ idY

2. f is continuous in x as well as in t

Intuitively this means that the space X can continuously
be shrunken onto the space Y . Note that the existence of a
deformation retraction implies homeomorphic equivalence
of X and Y but not vice versa.

With the preparatory work of the previous sections at
hand, we can now easily carry over this notion to the dis-
crete setting: The topological spaces X and Y are replaced
by voxel sets S and T and the continuous interval [0, 1] is
replaced by a discrete sequence of points in time numbered
from 0 to n.
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Definition: A discrete deformation retraction of a voxel set
S onto a subset T ⊂ S is a sequence S0, . . . , Sn of voxels
sets such that

1. S0 = S, Sn = T and T ⊂ Si for all i

2. S0 ≈ S1 ≈ · · · ≈ Sn

In Figure 7 we show an example where our deformation
retraction approach guarantees correct topology preserva-
tion.

Figure 7. Methods for topology preserving
voxel growing described previously attempt
to detect topology changes by analyzing the
number of connected components of a 3×3×3
configuration. As shown above, this is not
sufficient: In both cases the number of con-
nected components is the same (for the solid
as well as for the empty voxels), although the
Euler characteristic of the two configurations
is different.

3 Morphology

Morphological operators have been in wide use in the
image processing community, for a thorough exposition see
e.g. [19]. Here we use them to describe distance fields that
steer the inflation process of a voxel set.

3.1 Erosion and dilation

Intuitively, erosion describes the process of removing the
boundary layer of a voxel set. Dilation on the other hand
can be described as pasting another layer of voxels onto a
voxel set. To be mathematically more precise let the erosion
operator E and the dilation operator D be defined as

E(S) = {s ∈ S : s 6∼e w for all w ∈ Z
3}

D(S) = {w ∈ Z
3 : w ∼s s for some s ∈ S}

Figure 8 depicts the effect of these operators. Note that
E and D are in general not inverse to each other,

E ◦ D 6= id 6= E ◦ D.

E ◦ D and E ◦ D are also known as the opening and closing
operations.

E

D

Figure 8. Morphological operators: Top: The
erosion operator E removes the boundary
layer of voxels from a given voxel set. Bot-
tom: The dilation operator D adds another
layer of voxels to a voxel set. As can be seen
above, erosion and dilation are not inverses
of each other.

Often, the morphological operators are restricted by
some other voxel set R. More precisely, we define

ER(S) = R ∪ E(S)

for voxel sets R ⊂ S and

DR(S) = R ∩ D(S)

for voxel sets R ⊃ S. These restricted operators are illus-
trated in Figure 9. Repeated erosion/dilation of a voxel set
S generates nested sequences of the form

S ⊃ ER(S) ⊃ E2
R(S) ⊃ · · ·

S ⊂ DR(S) ⊂ D2
R(S) ⊂ · · ·

Following [9] we use these sequences to define two distance
functions on the voxel grid. In particular let

dD,R,S(s) = n for s ∈ Dn
R(S) \ Dn−1

R (S)

be the distance of the voxel r ∈ R from S and let

dE,R,S(s) = n for s ∈ En
R(S) \ En−1

R (S)

be the distance of the voxel s ∈ S from the surrounding
empty space. Figure 10 depicts these distance functions in
the two dimensional setting.

3.2 Topology preserving inflation

Let S be a voxel set and R ⊃ S. Our goal is to describe a
discrete topology preserving inflation of S to R. In general,
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ER

DR

R

S

S
R

Figure 9. Restricted morphological operators.
Top: The restricted erosion operator ER(S)
removes only those boundary voxels from
S that do not belong to R. Bottom: The
restricted dilation operator DR(S) only adds
those boundary voxels to S that also belong
to R.

such an inflation does not have to exist because there might
be no discrete deformation retraction from R onto S. The
best we can do is to find a maximal subset R′ ⊂ R such that
there exists a discrete deformation retraction from R′ to S.
The basic idea is simple: We successively label voxels from
R as solid as long as the topology does not change. To be
more precise, let us call a voxel t feasible with respect to a
voxel set T , if T ≈ T ∪ {t}. Now we set R0 := S and let

Ri+1 := Ri ∪ {si}, (1)

where si ∈ R \Ri is feasible with respect to Ri. We repeat
this process until there are no more feasible voxels left and
end up with a discrete deformation retraction from R′ :=
Rn to S. Obviously, R′ is maximal and we write

S
R
−→ R′.

In general, R′ is not uniquely defined by the above pro-
cedure. To make the algorithm deterministic we assign a
priority p(s) to each voxel s. Then we modify the choice in
equation (1) to always select a feasible voxel with maximal
priority.

The priority function p can be adapted to different re-
quirements. A particularly intuitive choice is setting

p := dE,R,S .

The effect of this choice of p is demonstrated in Figure 13.
S is a voxel set homeomorphic to a sphere, χ(S) = 1, but R

has a handle, χ(R) = 0. The inflation process has to avoid

R

S

R

S

Figure 10. Distance functions. Darker colors
indicate greater distances. Left: Initial con-
figuration. Middle: Distance field of dD,R,S .
Right: Distance field of dE,R,S

the handle by placing a cut somewhere. Because p measures
the distance of a voxel from the surrounding empty space,
voxels which are on the boundary of R are added last dur-
ing inflation. Hence, the cut is automatically placed at that
location of R that has minimal diameter.

Implementation note
Although R′ is maximal it is still possible that a rather
large part of R is not covered by R′. This can happen, e.g.
when the inflation process runs into a dead end as depicted
in Figure 11. A straightforward method to overcome this
inherent problem is to double the resolution of the voxel
sets before applying the inflation process. Similar to Sec-
tion 2.3/Figure 6 we try to set the eight subvoxels sequen-
tially.

s

Figure 11. Dead ends may stop the inflation
process at early stages. On the left the dark
voxels have already been conquered by the
inflation process. The center voxel s cannot
be conquered, since this would change the
topology. Increasing the resolution by subdi-
viding the entire voxel space fixes the prob-
lem (right).
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4 Application Example

In this section we present an application example how to
make use of topology preserving inflation in the context of
medical image processing.

4.1 Problem statement

Let us consider a discrete intensity-field h defined on Z
3,

h : Z
3 → {0, . . . , m}.

Such data typically arises in medical imaging applications,
like e.g. CTs or MRTs. As a typical example we consider
a set of MRT scans of a human brain (Figure 16), however,
the method is of course applicable to other organs as well.

The intensities of a MRT image give a rough classifica-
tion of the tissue type of the corresponding pixels. High in-
tensity values correspond to white matter (WM), midrange
intensities to grey matter (GM) and low intensities to the
surrounding cerebrospinal fluid (CSF). However, it is in
general not possible to simply threshold the pixel values in
order to exactly classify the pixels: Because of the finite
resolution of the imaging device, the pixels actually repre-
sent the average intensity taken over a certain volume of the
brain.

From what is known from neuro-anatomy we expect the
interface of CSF and GM to be homeomorphic to a sphere.
However, because of noise in the data and because of cav-
ities that are generated by folds of the cortex, a simple
thresholding of the intensity values generally ends up with
a surface whose characteristic is different. To get a topolog-
ically correct reconstruction of the interface, we proceed in
several stages that are explained in the following sections.

4.2 Presegmentation and Classification

In a first step we apply a rather standard presegmentation
algorithm to the voxel data. This is done very similar as
described in [20]. For the convenience of the reader, we
recap the main steps by means of Figure 16.

First the measurement noise which is inherent in every
physical data acquisition process is filtered out by applying
an anisotropic diffusion filter to the data set. Next the image
is segmented by applying an LoG (Laplacian of Gaussian)
Operator,

M := {v ∈ Z
3 : LoG(v) > 0}.

To cut out thin voxel structures, the set M is eroded, and
a connected component analysis is performed on M ′ :=
E(M). All but the maximal component are removed and a
hole-filling closing operator is applied which leaves us with
a mask M ′′ that approximately covers the GM and WM.
By discarding all voxels in the original dataset that are not
covered by M ′′, the skull is automatically removed.

This automatic procedure is an alternative to projecting
the MR volume into Talairach space and then apply stan-
dard masks to remove the cranium and the cerebellum [22].

The second step is to classify each of the remaining vox-
els according to the tissue types WM, GM and CSF. Let h

be the intensity field and let

Uφ = {v ∈ Z
3 : h(v) > φ}.

We choose two suitable thresholds σ < τ and set

W := Uτ (white matter)

G := Uσ \W (grey matter)

E := Z
3 \ G \ W (empty space).

4.3 Extracting the CSF/GM interface

The previous steps leave us with a set of voxels W , that
are classified as white matter. This voxel set provides an ac-
curate initial representation of the brain structure and serves
as a starting point for the inflation procedure.

As W is in general not simply connected, we first per-
form a component analysis and remove all but the maximal
component. Inclusions are then removed analogously by
applying a component analysis to Z

3 \ W . Hence, in the
following we can assume, that W is connected and free of
inclusions. Still, the topology of W is in general not cor-
rect. We remove the handles as described in Section 3.2 by
first computing the priority function p = dE,W,∅, then se-
lecting a single voxel v with maximal priority and inflating
this voxel to W ,

v
W
−→ W ′.

The inflated voxel set W ′ lies within W and is of the correct
topology (Figure 14).

Alternatively, we can take the dual approach and inflate
the empty space around W . This will remove the handles
by filling them up instead of placing a cut. Kriegeskorte
et al. [9] compute both solutions and then decide for each
handle separately whether to fill it or whether to cut it based
on an estimation of the resulting error.

Finally, the white matter W ′ is inflated to the grey matter
G,

W ′ G
−→ W ′′.

Here again we take advantage of a priority function such
that the handles of G will be cut where the diameter is
smallest (Figure 15).

4.4 Improving the Inflation Process

Note that after the classification the values of the (possi-
bly filtered) intensity field h are not used anymore: the in-
flation process is controlled by the distance function alone.
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This behaviour can sometimes lead to counter intuitive re-
sults as is demonstrated in Figure 17, where the cut is not
placed at the minimum of the intensity function. We can
solve this problem by incorporating the scalar field gradient
into our growing procedure without any risk of topology ar-
tifacts caused by measuring noise.

The idea is as follows: Instead of inflating W ′ G
−→ W ′′

in one step, we successively inflate

W ′ Uτ−1

−−−→ W 1 Uτ−2

−−−→ · · ·
Uσ+1

−−−→ W τ−σ G
−→ W ′′,

i.e. we successively lower the σ threshold. Figure 17
demonstrates this process. Using this approach we assure
that the topological cuts always are done along the valleys
of the intensity field.

4.5 Extracting ∂S

For visualization purposes as well as for other down-
stream applications it is often necessary to explicitly ap-
proximate ∂S, e.g. as a triangle mesh T . Obviously T
should not only approximate ∂S well but it should also be of
the same topology. To construct T we follow the approach
of Lachaud [10] and use a marching cubes algorithm [13]
whose lookup table has been modified such that it matches
the neighborhood relation ∼s of the solid voxels. These
modifications are straightforward, an example is depicted
in Figure 12. Note that since ∼s and ∼e are compatible,
there are no ambiguate voxel configurations.

Figure 12. Left: Standard marching cubes tri-
angulation of a voxel with two diagonally op-
posing marks. Right: Modified triangulation
that respects the 26-neighborhood relation.

4.6 Results

We applied our inflation procedure to different MRT
scans. Figure 14 shows the reconstruction of the white mat-
ter surface from a MRT volume of 256× 256× 130 voxels.
Figure 15 shows the grey matter surface of the same dataset.
The whole resconstruction process took less than 5 minutes
on a standard PC.

5 Conclusion and Future work

In this paper we presented a mixed topological / mor-
phological framework to accurately model the inflation pro-

cess of surfaces in the discrete setting of voxel spaces. We
showed the applicability of this framework by embedding
it into an algorithm to extract the cortical surface of a brain
from a set of MRT scans. By letting the intensity gradi-
ent control the inflation process, we assure that separating
cuts are placed at places where the intensity field takes on a
minimum.

As future work we plan to subject our reconstruction re-
sults to a rigorous validation process, as it is commonplace
for medical applications. We also plan to apply the recon-
struction framework in other application, like the removal
of topological noise from volume data that, e.g., was gath-
ered by ’space carving’ methods from range images.
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Figure 13. Inflation of a voxel set: a) The initial
voxel sets S (cyan) and R (pink). b) Visualiza-
tion of the priority function, darker colors sig-
nify greater distance from the boundary. c) -
f) Succesive stages of the inflation process.
The last voxel cannot be set, since it would
cause a topology change.

Figure 14. White matter surface: The inter-
face between the white and the grey matter
provides the starting point for the inflation
process.

Figure 15. Grey matter surface: By inflat-
ing the white matter, we obtain a topologi-
cally correct approximation of the interface
between grey matter and cerebrospinal fluid.
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a) b)

c) d)

e) f)

Figure 16. MRT processing pipeline: a) Orig-
inal data. b) LoG filtered data. c) After mor-
phological segmentation. d) Skull removed.
e) Inital white matter approximation. f) After
the inflation procedure.
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Figure 17. Depicted above is a 1-dimensional
slice through a voxel set. If h(v) ≥ τ the corre-
sponding voxel v belongs to the white matter
W . If σ ≤ h(v) < τ , v belongs to the grey
matter G. Using a distance driven inflation
process causes the cut to be placed halfway
between the boundaries (top). If instead, σ is
successively lowered as shown in the lower
pictures the inflation process will locate the
cut at the minimum of the intensity function.
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