
View-dependent Streaming of Progressive Meshes

Junho Kim1,2 Seungyong Lee1 Leif Kobbelt2

1Dept. of Computer Science and Engineering, POSTECH, Korea
2Computer Graphics Group, RWTH Aachen, Germany

Abstract

Multiresolution geometry streaming has been well stud-
ied in recent years. The client can progressively visualize
a triangle mesh from the coarsest resolution to the finest
one while a server successively transmits detail informa-
tion. However, the streaming order of the detail data usu-
ally depends only on thegeometric importance, since basi-
cally a mesh simplification process is performed backwards
in the streaming. Consequently, the resolution of the model
changes globally during streaming even if the client does
not want to download detail information for the invisible
parts from a given view point.

In this paper, we introduce a novel framework for view-
dependent streaming of multiresolution meshes. The trans-
mission order of the detail data can be adjusted dynam-
ically according to thevisual importancewith respect to
the client’s current view point. By adapting the truly selec-
tive refinement scheme for progressive meshes, our frame-
work provides efficient view-dependent streaming that min-
imizes memory cost and network communication overhead.
Furthermore, we reduce the per-client session data on the
server side by using a special data structure for encoding
which vertices have already been transmitted to each client.
Experimental results indicate that our framework is efficient
enough for a broadcast scenario where one server streams
geometry data to multiple clients with different view points.

1. Introduction

With the ever increasing complexity of polygon mesh
models, the need for hierarchical and adaptive techniques
becomes more and more obvious. In the graphics literature,
much research has been done on mesh decimation tech-
niques, which can effectively reduce the complexity of a
given mesh while taking some prescribed error tolerances
into account [7, 2, 16]. If we store the sequence of elemen-
tary decimation steps, we can later reverse the sequence and
perform refinement steps in order to reconstruct the original
mesh.

This observation has motivated the termprogres-
sive mesh(PM) [8] which refers to a mesh data set that is
represented by a coarse base mesh plus a sequence of de-
tails that can eventually reconstruct the original high reso-
lution mesh. This representation turns out to be particularly
useful in the context of a distributed server-client net-
work where a polygon mesh has to be transmitted over
a data channel with a limited bandwidth. If we trans-
mit the coarse base mesh first, followed by the detail data,
the client can display a low quality version of the ob-
ject right away and then progressively improve the quality
as more and more refinement steps are received.

Unfortunately, however, the standard PM representation
only providesview-independentstreaming of an object. The
transmitted details globally change the model on the client
side although the client does not need to download data that
do not contribute to its screen-space image quality at that
time. This limitation is due to the fact that the streaming or-
der of detail data usually depends only on thegeometric
importancesince the multiresolution representation is pro-
duced by a simplification process that does not consider any
information about viewing directions. In the case of trans-
mitting a very large-scale mesh, it would be more effective
to transmit the detail dataview-dependently, based on its
currentvisual importanceon the client side.

View-dependent refinement of PMs provides the func-
tionality of selecting and adaptively applying detail data
with respect to the visual importance. For each vertex in the
current mesh, a view-dependent refinement criterion is eval-
uated to indicate the parts of the mesh which should be lo-
cally refined or simplified in order to obtain a certain visual
quality. When the regions affected by two different decima-
tion or refinement steps overlap, the partial ordering is han-
dled by a selective refinement scheme.

The contribution of this paper is to combine the two con-
cepts of progressive transmission and view-dependent re-
finement. The idea is to store a mesh representation for
view-dependent refinement on the server side and progres-
sively transmit detail information according to the visual
importance with respect to the current viewing parameters
on the client side. The major problem to be solved for this
is to find a mesh representation that allows the client to re-

server

client

client

client

...

server

ref. of vertex hierarchy
active tags
vertex front*

current mesh
vertex hierarchy
vertex front

client

PM #0

base mesh
vertex hierarchy

PM #1 ...

PM database

server

client

client

client

...

server

ref. of vertex hierarchy
active tags
vertex front*

current mesh
(partial) vertex hierarchy
vertex front

client

PM #0

base mesh
vertex hierarchy

PM #1 ...

PM database

(a) network model (b) data structures on the server and a client

Figure 1. Overview of the proposed view-dependent streaming framework: We assume that the band-
width of the down-link is wider than that of the up-link as depicted in (a). The vertex front ∗ on the
server side can be eliminated by windowing active tags, as discussed in Section 6.1.

construct a proper mesh even if the server sends the detail
information in random order. This is similar to the view-
dependent refinement setting with the important difference
that the client does not have access to the complete ver-
tex hierarchy. We propose a solution to this problem that
is based on the truly selective refinement approach [13].

To reduce the communication overhead between the
server and the client, we design the system architec-
ture in a way that minimizes the redundancy in the
up-link as well as the down-link communication. Also, the
amount of information maintained in the server is min-
imized in order to make the framework applicable to a
scenario where a single server communicates with a num-
ber of clients.

Much research has been devoted to the view-dependent
streaming of geometry [21, 1, 19, 20, 24]. However, only a
few techniques can provide the original mesh connectivity
after downloading the entire PM with the view-dependent
streaming process. Similar to [21, 20, 24], this paper con-
centrates on view-dependent mesh streaming without any
loss of mesh connectivity. However, our framework pro-
vides a much better performance than those previous tech-
niques in terms of the transmitted data size and the stored
data size at the server.

The contributions of this paper can be summarized as
follows.

• Our framework provides the original mesh connectiv-
ity on the client at the end of the streaming process
while only the base mesh and the vertex hierarchy are
stored at the server. In contrast to [21, 20], no addi-
tional data structures are needed on the server side to
provide the original mesh connectivity.

• Since our framework is based on the truly selective re-
finement scheme of a progressive mesh [13, 14], we
can guarantee that the minimal amount of streaming

data is transmitted from the server to the client for a
given viewpoint.

• We propose a special data structure that compactly rep-
resents the vertex front [9] for selective refinement of
a progressive mesh. With this data structure, the mem-
ory overhead at the server can be minimized.

2. Related Work

Streaming of multiresolution geometry

Streaming of multiresolution geometry is closely related
with multiresolution geometry representation and its com-
pression. Due to its intrinsic property, any type of multires-
olution representation can be naturally extended to a view-
independent geometry streaming framework. Basically, the
progressive loading of a multiresolution model is already
a streaming process when we consider the external memory
as a server and the main memory as a client. Moreover, from
the streaming point of view, we can reduce the required net-
work bandwidth between a server and a client with a com-
pressed multiresolution representation.

Hoppe introduced the progressive mesh (PM) represen-
tation that consists of a base mesh and a sequence of de-
tail data, which indicates how to rollback to the original
mesh data [8]. The resolution of the model is changed by
adding details with vertex split (vsplit) transformations or
subtracting details with edge collapse (ecol) transforma-
tions. With PM representation, multiresolution streaming
of an irregular mesh can be easily achieved by transmit-
ting the base mesh and the details sequentially to the client
side. Moreover, the size of the transmitted details can be
dramatically reduced when we use a compressed progres-
sive mesh (CPM) representation introduced by Pajarola and
Rossignac [18].

Labsik et al. [15] proposed a progressive transmis-
sion method for subdivision surfaces. Khodakovskyet
al. [12] presented a compression technique for semi-regular
meshes.

View-dependent streaming of multiresolution ge-
ometry

Rusinkiewicz and Levoy proposed a view-dependent
streaming based on QSplat [19]. They provide a net-
work based visualization for very dense polygon meshes
but the splatting approach is not suitable when the client re-
quires the mesh connectivity. Bischoff and Kobbelt in-
troduced an error resilient streaming approach [1]. They
define the normal forms of meshes and progressively con-
struct a mesh by Delaunay triangulation with several
topological operations. Therefore, a small number of er-
rors during communication does not affect the global
shape of the reconstructed mesh on the client side. How-
ever, a loss of mesh connectivity can occur since the tech-
nique ignores the original mesh connectivity.

Yang et al. [24] introduced a patch-based view-
dependent streaming technique. They divide a mesh into
several patches and compress each patch offline. In the
streaming of a mesh, the entire connectivity information of
the mesh is first transmitted to the client and then the com-
pressed patches are selected and streamed with respect to
the client viewing information. With the approach, the res-
olution of the mesh cannot be changed smoothly on the
client side.

To et al. [21] presented a view-dependent streaming
based on the view-dependent refinement method proposed
by Xia et al. [23]. Since the selective refinement scheme
of [23] has an 1-ring neighborhood precondition, a fan of 1-
ring faces is reserved for each node of the vertex hierarchy
on the server side. Southernet al. [20] introduced a view-
dependent streaming based on Hoppe’s view-dependent PM
refinement framework [9]. In order to check the precondi-
tion of [9], Directed Acyclic Graphs (DAG) are used, each
of which is combined with a node in the vertex hierarchy on
the server side.

The previous view-dependent streaming frameworks in-
herit the fundamental limitations of the view-dependent re-
finement schemes they adopt. Since the preconditions of se-
lective refinement schemes used in [21, 20] invoke com-
plicated dependencies among vertex split transformations,
they should reserve an additional data structure such as a
1-ring triangle fan or a DAG graph for each node in the ver-
tex hierarchy on the server side. In contrast, our framework
only needs a base mesh and a vertex hierarchy on the server
side for view-dependent streaming of a PM.

3. Overview

One of the possible applications of our view-dependent
streaming framework would be a flight simulation game
with multiple participants. The service company may want
to attract customers by providing several new map data oc-
casionally. However, with the typical downloading process,
a customer cannot play the game until the whole terrain
data have been received. In contrast, our view-dependent
streaming technique allows any participant to join and play
the game immediately without waiting for the download of
the whole terrain data, even when several terrain maps have
been newly created.

3.1. Setting

The network model of our view-dependent streaming
framework consists of a server and multiple clients (see Fig-
ure 1). The server has a database of several different meshes
represented in the form of a view-dependent PM (i.e., a
base mesh and a vertex hierarchy), and we assume that the
server is powerful enough to deal with requests from mul-
tiple clients. Each client downloads a mesh from the server
view-dependently and visualizes the downloaded mesh with
different view points not only during the streaming process
but also after downloading the entire PM data. We assume
that the network bandwidth of a down-link from the server
to a client is much wider than that of an up-link in the re-
verse direction (see Figure 1(a)).

3.2. Our Approach

Let a given triangle mesh modelM be stored in a view-
dependent progressive mesh data structure on the server
side. To provide maximum flexibility in terms of the order
in which the vertex split operations can be performed, we
choose the particular data structure underlying the truly se-
lective refinement approach [13].

At any point in time the client has received a sub-setM ′

of the original finest resolution meshM . Initially M ′ will
be just the coarsest base mesh. With a change of the viewing
parameters, the client generates a view-dependently refined
meshM̃ from M ′. If some vertices of̃M do not need to
be displayed to satisfy the error tolerance requirements, the
client can remove them from the set of active vertices with-
out contacting the server. Moreover if these vertices have
to be re-activated later, the client can include them again
into the list of active vertices without contacting the server.
Only when the view-dependent refinement criteria requires
the inclusion of new vertices that have not yet been trans-
mitted, the client sends a request to the server by transmit-
ting its current viewing parameters.

seli

vsplit<0, 2>

<1, 3>

a
lv

a
rv

is
v

a
lv

<0, 2>

<1, 3>
a
rv

it
v

iu
v

seli
ecoli

ecol

is
v

iu
v

it
v

10 11

1

2 3

4 5 6 7

tree 0 tree 1

ˆ
il
v ˆ

ir
v

is
v

14 15

1

2 3

6 7

12 13

vertex
front

it
v

is
v

iu
v

a
lv

ˆ
ir
vˆ

il
v

a
rv

vertex
front seli

vsplit<0, 2>

<1, 3>

a
lv

a
rv

is
v

a
lv

<0, 2>

<1, 3>
a
rv

it
v

iu
v

seli
ecoli

ecol

is
v

iu
v

it
v

10 11

1

2 3

4 5 6 7

tree 0 tree 1

ˆ
il
v ˆ

ir
v

is
v

14 15

1

2 3

6 7

12 13

vertex
front

it
v

is
v

iu
v

a
lv

ˆ
il
v

a
rv

vertex
front

ˆ
ir
v 28 29 26 27

seli

vsplit<0, 2>

<1, 3>

a
lv

a
rv

is
v

a
lv

<0, 2>

<1, 3>
a
rv

it
v

iu
v

seli
ecoli

ecol

is
v

iu
v

it
v

10 11

1

2 3

4 5 6 7

tree 0 tree 1

ˆ
il
v ˆ

ir
v

is
v

14 15

1

2 3

6 7

12 13

vertex
front

it
v

is
v

iu
v

a
lv

ˆ
il
v

a
rv

vertex
front

ˆ
ir
v 28 29 26 27

(a) (b) (c)

Figure 2. Truly selective refinement scheme: A PM is constructed with several edge collapse trans-
formations shown in (a). Active cut vertices can be located with a climbing-up approach in (b) or
a 1-ring test approach in (c). The gray lines in (b) indicates the climbing-up path. In (c), each ver-
tex is denoted by the <tree-id, node-id > notation.

The server on the other hand maintains a list of bi-
nary flags indicating which vertices it already transmitted
to the client in the past (i.e., the vertices ofM ′). When a
client request arrives, the server checks based on the view-
dependent refinement criterion which vertices have to be
refined and transmits the corresponding vertex split oper-
ations to the client. Notice that the server only checks if
refinement is necessary and is not concerned about coarsi-
fication since this is handled autonomously by the client.
This guarantees that each vertex split operation is sent ex-
actly once which minimizes the communication overhead.

By this approach we are able to design a server-client
system for view-dependent progressive geometry streaming
which has several important features:

• Minimum redundancy: Each vertex split operation
is sent from the server exactly once and only when
the view-dependent refinement criterion first requires
it. On the other hand, the client sends requests to the
server only when it cannot satisfy the criterion using
the information that it received in the past.

• Maximum efficiency: At each moment in time the
server sends exactly those vertex split operations that
add the most to thevisual qualityon the client side.
This reduces the bandwidth requirements by a factor
of about two if the client displays the complete object
from a fixed perspective. This factor decreases if the
user changes the viewpoint during downloading, but it
even increases if the client’s display only shows a part
of the object.

• Minimum server load: The server only needs to store
a comparably small amount of data for each client.
Only a list of binary flags for the vertex status (trans-
mitted/not transmitted) is necessary. As we will show
in Section 6.1 the server can use a dynamic data struc-
ture that grows proportionally to the number of already
transmitted vertices rather than requiring an amount

of memory proportional to the finest level of detail.
This reduction of the per-client costs on the server side
makes our approach applicable to multi-client scenar-
ios where a server broadcasts geometry data to a mul-
titude of clients.

4. Basic Idea

We use the truly selective refinement scheme [13] to pro-
vide the desired properties for our view-dependent stream-
ing framework. In this section, we briefly review the scheme
and give the basic idea of how to handle the view-dependent
streaming problem with the scheme.

The key ingredients of the truly selective refinement
scheme are the fundamental cut vertices and a special index
notation for nodes in the vertex hierarchy. Letvsi be the ver-
tex introduced by collapsing an edgeetiui

in the PM con-
struction (see Figure 2(a)). With the truly selective refine-
ment scheme, the vertexvsi

and the edgeetiui
can be adap-

tively split and collapsed withvsplitsel
i andecolsel

i trans-
formations, respectively.

vsplitsel
i = vsplit(vsi

, vti
, vui

, va
l , va

r)
ecolsel

i = ecol(vsi
, vti

, vui
),

where

va
l = ActiveAncestor(v̂li)

va
r = ActiveAncestor(v̂ri

).

The verticeŝvli andv̂ri are the fundamental cut vertices of
vsi

, and every fundamental cut vertex corresponds to a leaf
node in the vertex hierarchy. TheActiveAncestor() proce-
dure returns the active ancestor of a vertex which exists in
the current vertex front (see Figure 2(b)).

In [13], it was shown that theactiveancestors of̂vli and
v̂ri are thevalid cut vertices ofvsi . The proof is based on
the dual perspective of a progressive mesh. Since the ac-
tive ancestors of fundamental cut vertices are always con-
tained in the current mesh, anyvsplitsel

i or ecolsel
i trans-

formation can be immediately performed without triggering
other transformations. This is why the refinement scheme is
calledtruly selective.

Now we extend the scheme to the server-client network
streaming problem. Suppose a given triangle meshM is
stored as a view-dependent PM data structure (i.e., a base
meshM0 and a vertex hierarchyH) at the server. During
the streaming ofM , the client has received only a subsetH ′

of the original vertex hierarchyH. Assume that the shaded
nodes in Figure 2(b) represent the partially constructed ver-
tex hierarchyH ′ on the client side and the client wants
to split a vertexvsi

into an edgeetiui
due to the view-

dependent refinement criteria. Then, the server sends infor-
mation of two children ofvsi

in H, vti
andvui

, as well as
the fundamental cut vertices,v̂li andv̂ri . On the client side,
we should determine the active cut vertices,va

l andva
r , from

the fundamental cut vertices in order to maintain valid mesh
connectivity between the edgeetiui

and the current 1-ring
neighborhood ofvsi

. However, it is non-trivial to find the
active cut vertices with thepartially constructed vertex hi-
erarchy on the client side since the fundamental cut vertices
may not be present in the current vertex hierarchyH ′ in
most cases (see Figure 2(b)).

We can resolve this problem by using the<tree-id, node-
id> notation for a node in the vertex hierarchy, proposed
in [13]. In the notation, each tree in the vertex hierarchy
is assigned atree-id and each node in a tree has a proper
node-idsimilar to heap indexing (see Figure 2(c)). Based
on the<tree-id, node-id> notation, the active cut vertices
can be located with the partially constructed vertex hierar-
chy as follows. Basically, theActiveAncestor() procedure
can be implemented by climbing up from a leaf node un-
til we meet an active node in the vertex hierarchy. With
the<tree-id, node-id> notation, the climbing-up can be re-
placed by the binary right-shift operation ofnode-id. For ex-
ample, as shown in Figure 2(c), an active cut vertexva

l in-
dexed by<0,2> can be located from<0,10>, the index no-
tation of v̂li , by right-shifting twice until we meet the ver-
tex front. With this technique, the client can properly update
the current view-dependent mesh from the transmitted fun-
damental cut vertices even though only a partial vertex hier-
archy has been constructed. Note that locating the active cut
vertices with anincompletevertex hierarchy was not con-
sidered in the original scheme [13] and this is a key obser-
vation that allows us to extend the scheme [13] to the net-
work streaming domain.

5. View-dependent Streaming

5.1. Overall process

In our view-dependent streaming framework, the overall
process of network communication between the sever and a
client goes as follows.

• Upon the initial request for a mesh from a client, a ses-
sion is established between the server and the client
(session creation).

• When the session has been created, the server sends the
base mesh to the client and waits for the current view-
ing parameters being sent from the client (base mesh
transmission).

• If the client realizes that some additional detail data are
required to refine the current mesh view-dependently,
the client sends its viewing parameters to the server
(view information transmission).

• With the viewing parameters from the client, the server
selects proper detail data and sends them to the client.
On the client side, the transmitted detail data will be
used for improving the screen-space image quality
(view-dependentvsplit packet transmission).

• If sufficient detail data have been received for the
current view, the client updates the current view-
dependent mesh using the data (view-dependent re-
finement).

• The session can be closed upon a request from the
client (session close).

The steps of the viewing parameter transmission and
view-dependentvsplit packet transmission are repeated in
the main loop during network communication. The server
performs thevsplit packet transmission step only when a
new view information has arrived from the client. At the
client, the view information transmission, receiving thevs-
plit packets from the server, view-dependent refinement are
performed in parallel with a multi-threading or time-sharing
technique.

5.2. Data structures

Figure 1(b) shows the data structures used in our view-
dependent streaming framework. The server contains sev-
eral view-dependent PMs in a common database, where
each view-dependent PM consists of a base mesh and a ver-
tex hierarchy. The database on a server is static and does not
change during network communication. The server may es-
tablish session connections with multiple clients. For each
session, the server stores a reference to a vertex hierarchy
of the mesh being transmitted and active vertex tags to rep-
resent the current vertex front. An active tag is set to ‘1’

only when the corresponding node in the vertex hierarchy is
contained in the vertex front. The vertex front at the server
keeps track of the transmitted vertices to the client, while
the vertex front at the client consists of the vertices of the
current view-dependently refined mesh. Since we do not re-
send previously transmittedvsplit packets, the vertex front
on the server side corresponds to the leaf nodes of the par-
tially constructed vertex hierarchy on the client side. There-
fore, the vertex front on the server side is updated only
downward in the vertex hierarchy as view-dependentvsplit
packets are transmitted.

The data structures on the client side for each session is
similar to those for the view-dependent refinement; a mesh
(e.g., halfedge data structure), a vertex hierarchy, and a ver-
tex front. The vertex hierarchy on the client side is par-
tially constructed from previously transmitted detail data.
The vertex front on the client corresponds to vertices in the
current mesh. In contrast to the vertex front on the server
side, it freely moves within the partial vertex hierarchy on
the client during the view-dependent streaming process.

5.3. Detailed steps

Now we describe the detailed steps of network commu-
nication between a server and a client. In our experiments,
we use TCP sockets for network communication.

Session creation:A session is established by a connection
request from a client to the server. After the session has been
created, the client chooses a PM from the catalogue of PM
database stored in the server.

Base mesh transmission:After the desired PM has been
specified, the server streams to the client the base mesh of
the PM followed by information for view-dependent refine-
ment of base mesh vertices, which consists of a radius, a
cone of normals, and parameters to calculate the screen-
space errors [9]. Next the server sets a reference to the ver-
tex hierarchy of the PM. Then, active tags are created with
the number of nodes in the vertex hierarchy. Initially, we set
the tags that correspond to the roots of the trees in the ver-
tex hierarchy as ‘active’, which means the vertex front at the
server consists of the root nodes.

After downloading the entire data related to the base
mesh, the client creates a base mesh, a vertex hierarchy, and
a vertex front. At that time, the vertex hierarchy at the client
is composed only of root nodes. Similarly, the vertex front
only contains the roots of the vertex hierarchy.

View information transmission: With the changes of the
its viewing parameters, the client may need additional de-
tail data related to the newly visible parts. To obtain the ad-
ditional details, the client sends the current viewing param-
eters to the server. The packet for the client’s viewing pa-
rameters contains a4 × 4 modelview matrix, a fovy (field

of view) of the view frustum, an aspect ratio of the client
screen, and a user-specified tolerance (see Figure 3(a)).

View-dependent vsplit packet transmission: With the
viewing parameters received from the client, the server de-
terminesvsplit packets to be transmitted to the client. Dur-
ing this process, we visit each node in the vertex front and
perform a query procedureqrefine() to test whether the ver-
tex should be split or not with respect to view-dependent
refinement criteria. In our framework, we use the cri-
teria proposed by Hoppe [9], which tests the viewing
frustum, the cone of normals, and the screen-space er-
ror. If the qrefine(vsi) returns true, then the server trans-
mits a vsplit packet, which contains the fundamental cut
vertices ofvsi

and information for view-dependent refine-
ment for two newly created vertices,vti

and vui
, as de-

picted in Figure 3(b). Then, the vertex front stored at the
server is updated by deactivating the nodevsi

and acti-
vate its two children,vti andvui .

4x4 modelview
matrix fovy aspect

ratio
user-specified

tolerance

i)

ii)

iii)

geometric
detail

topological
detail

children info. for
view-dependent refinement

i) ii) iii)

it
v

iu
v

is
v ˆ

il
v ˆ

ir
v<tree-id, node-id> <tree-id, node-id> <tree-id, node-id>

,
i it ur r
(,), (,)

i i i it t u uα αn n
(,), (,)

i i i it t u uµ δ µ δ

radius:

cone of normals:

screen-space error:

(a) view information packet (client→ server)

4x4 modelview
matrix fovy aspect

ratio
user-specified

tolerance

i)

ii)

iii)

geometric
detail

topological
detail

view-dependent refinement
information for children nodes

i) ii) iii)

it
v

iu
v

is
v ˆ

il
v ˆ

ir
v<tree-id, node-id> <tree-id, node-id> <tree-id, node-id>

,
i it ur r
(,), (,)

i i i it t u uα αn n
(,), (,)

i i i it t u uµ δ µ δ

radius:

cone of normals:

screen-space error:

(b) vsplit packet ofvsi
(server→ client)

Figure 3. Communication packets: view infor-
mation (a) and vsplit packets (b) are trans-
mitted through the up-link and down-link, re-
spectively.

Although the truly selective refinement scheme is used
in our framework, the partial ordering ofvsplitsel

i must
be checked on the server side due to limitations of the
vsplit/ecol operators.1 If the active ancestorva

l of v̂li is
equal to the active ancestor ofva

r of v̂ri , we enforce trans-
mission of thevsplit packet forva

l prior to vsi
until va

l is
different from va

r . We can simply determine the partial-
ordering amongvsplit packets without the mesh structure,
as summarized in the following pseudocode.

1 vsplit andecol operators can only deal with transformations between
2-manifold meshes [14, 4, 10].

Algorithm SelectiveStreaming(vertex hierarchyof a PM)
for eachv ∈ vertex frontdo

if qrefine(v) = truedo
SelStreamVSplit(v)

end
end

Algorithm SelStreamVSplit(vsi
)

va
l ← ActiveAncestor(v̂li)

va
r ← ActiveAncestor(v̂ri

)
// check the partial ordering
while va

l = va
r do

SelStreamVSplit(va
l)

va
l ← ActiveAncestor(v̂li)

va
r ← ActiveAncestor(v̂ri

)
end
StreamVSplit(vsi)

In the pseudocode, theqrefine() procedure returns false for
a real leaf vertex of the complete vertex hierarchy for any
viewpoint of the client since there is no screen-space error
for the real leaf vertices.

When the client receives avsplit packet, it updates its
vertex hierarchy using the data. All newly added nodes are
dangled as the leaves of the partially reconstructed vertex
hierarchy on the client side. With the<tree-id, node-id>
notation ofvsi , we first find the corresponding node in the
vertex hierarchy and set the fundamental cut vertices ofvsi

from the transmitted packet. Then, we create two nodesvti

andvui
as the children ofvsi

and copy the information for
view-dependent refinement of the nodes from the packet.
This process is summarized in the following pseudocode.

Algorithm UpdateVHierarchy(vsplit packet ofvsi
)

vsi
← GetVHierarchyNode(<tree-id, node-id> of vsi

)
vsi .fund lcut index← <tree-id, node-id> of v̂li

vsi
.fund rcut index← <tree-id, node-id> of v̂ri

[vti , vui]← MakeChildren(vsi)
FillChildrenInfo(vti , vui , vsplit packet ofvsi)

View-dependent refinementDuring the view-dependent
refinement on the client side, the vertex front can be freely
moved in the partially constructed vertex hierarchy. Since
each vertex at the client has the<tree-id, node-id> nota-
tion, we can perform view-dependent refinement by the fol-
lowing pseudocode.

Algorithm SelectiveRefinement(selectively-refinedPM)
for eachv ∈ vertex frontdo

if qrefine(v) = truedo
if IsLeaf(v) = falsedo SelVSplit(v) end
else doStreamViewingInfo()end

end
else ifIsRoot(v) = falseand IsSiblingActive(v) = trueand

qrefine(v.parent) = falsedo
SelECol(v.parent)

end
end

In the pseudocode,IsLeaf(v) returns false if a vertexv
is not a leaf node in the partially reconstructed vertex hier-
archy at the client. SelectiveRefinement() is similar to the
typical view-dependent refinement procedure except for the
view information streaming part. SelVSplit() and SelECol()
procedures selectively splits a vertex into an edge and col-
lapses an edge into a vertex with the truly selective refine-
ment scheme, respectively. Note that the client does not
send its view information to the server until the additional
detail data are required which are not available in the cur-
rent vertex hierarchy. Recall that theqrefine() procedure for
a real leaf vertex of the complete vertex hierarchy always re-
turns false. Hence, the client does not transmit its view in-
formation to the server when the current vertex is a real leaf
vertex of the complete vertex hierarchy.

Session close:The session can be closed when all nodes in
the vertex hierarchy have been transmitted from the server
or when the client is satisfied with the current resolution
of the mesh. In the case when the session is stopped by a
network problem, the session can be continued later from
the stopped point. In that case, to re-initialize the the vertex
front at the server, the client transmits the<tree-id, node-
id> notations of the leaf nodes in its partially constructed
vertex hierarchy to the server side.

6. Optimization

6.1. Windowing active tags

If we store a vertex front in each session on the server
side the most significant size of the data structure on the
server may come from the vertex front. The maximum
length of a vertex front is equal to the number of vertices in
the original mesh. When the server has several sessions with
different clients to visualize very large meshes, the memory
requirement for vertex fronts can be a serious problem on
the server side.

To minimize the memory overhead, we discard the ver-
tex front data structure and just use the active tags to rep-
resent which nodes in the vertex hierarchy are contained in
a vertex front. The vertex hierarchy is packed into an ar-
ray while preserving the partial order that parent indices
should be smaller than their children’s indices (see Figure
4(a)). Then, the active tags for the nodes in the vertex hi-
erarchy can be represented by a bit array (see Figure 4(b)).
To determine thevslpit packets to be transmitted from the
server, wesequentiallyvisit the elements in the active tag ar-
ray. If the current bit is ‘1’, theqrefine() procedure is evalu-
ated to determine if the corresponding node should be split
into its children. Since the indices of newly active nodes are

greater than the one of the currently visited node, this se-
quential search would not miss any vertices that should be
considered in determiningvslpit packets.

…

cone of
normals

screen-
space errorposition fundamental

cut vertices radiusarray index
of its parent

array index
of its child

10 00 … 0 1 1 0… …

window
minwin maxwin

0

is
v

it
v

iu
v

(a) data structure for the vertex hierarchy

…

cone of
normals

screen-
space errorposition fundamental

cut vertices radiusarray index
of its parent

array index
of its child

10 00 … 0 1 1 0… …

window
minwin maxwin

0

(b) active tag windowing

Figure 4. Windowing active tags for the ver-
tex hierarchy

This procedure can be further accelerated with a win-
dowing technique. The idea of our windowing technique
is similar in spirit to [22, 3, 11] which handles very large
sized data by concentrating the computation or the storage
only on the currently active parts. Since the vertex hierarchy
stored in an array is a linear data structure, we can bound a
non-zero area with two array indices,winmin andwinmax,
as shown in Figure 4(b). The left part ofwinmin and the
right part ofwinmax are all zero bits, and the in-between
part contains ‘0’ and ‘1’ bits. Note that the window only
grows from the left to right direction because the partial or-
der among the nodes in the vertex hierarchy is preserved
in the array. While the window is moved from the left to
the right by performingvsplit operations, the left and right
parts of the window will be deallocated and allocated, re-
spectively. Although there remain several ‘0’ bits within the
window, we can reduce the traversing time for a vertex front
by confining the search among the indices fromwinmin to
winmax.

In our experiments, we pack the vertex hierarchy in a
breadth-first manner. As reported in Section 8, the window-
ing technique is sufficiently fast and uses much less mem-
ory than storing a vertex front itself.

6.2. Construction of a balanced vertex hierarchy

To identify a node in the vertex hierarchy, we use the
<tree-id, node-id> notation in the network transmission.
Since the number of bits fornode-idis equal to the height
of the vertex hierarchy, we should construct the vertex hier-
archy as balanced as possible in order to reduce the number
of bits used for representing the node index.

Two approaches exist to construct a balanced vertex hi-
erarchy. One approach is to reflect subtree depths onto the
error metric for edge collapses [9]. Another is to perform
level-wise edge collapses by choosing maximally indepen-
dent edge sets [23]. In this paper, we use a hybrid approach.
We choose maximally independent edges with the error
metric that considers subtree depths in the vertex hierarchy.

For each node index, we givedlog2(#v0)e bits for tree-
id anddepthmax bits fornode-id, where#v0 anddepthmax

represents the number of vertices in the base mesh and the
maximum depth in the vertex hierarchy, respectively. With
the construction of the balanced vertex hierarchy, 32 bits
were sufficient to represent the node indices in the vertex
hierarchy for any large-scaled meshes used in our experi-
ments (see Table 1).

model #v of base mesh # of details bits for<tree-id, node-id>
bunny 62 34,772 <6, 16>
horse 75 19,776 <7, 14>
feline 12 49,852 <4, 28>
skull 146 98,160 <8, 23>

Buddha 65 545,557 <7, 25>

Table 1. Statistics of PMs with balanced
vertex hierarchies: Note that each <tree-id,
node-id > notation can be stored in one 32 bit
integer.

7. Discussion

We can consider several variations of the approach pro-
posed in this paper. A straightforward variation would be
that the client sends the vertex indices to be split, instead
of viewing parameters. This can be seen as more efficient
than our framework in that the server does not have to eval-
uateqrefine() procedure on its vertex front. However, in this
case, the network traffic on the up-link will increase with the
size of the mesh data to be displayed. This approach could
be suitable for the peer-to-peer network model, but it would
be inefficient for the single server multiple clients network
model.

Another possible variation is to change the component of
the selective refinement scheme in our framework with one
of the other refinement schemes [23, 9, 5, 17], as in the pre-
vious work [21, 20]. However, in this case, the streaming
data size from the server to the client should be larger than
in our technique. The first reason is that the sizes of their
topological detail information are larger than the truly se-
lective refinement scheme, as discussed in [13]. The second
reason is that the vertex hierarchy on the client side must be
synchronized with that on the server side in order to perform

selective refinement with their topological details stored at
the client. To accomplish this, thevsplit packet must con-
tain some information for synchronization. In contrast, the
truly selective refinement scheme adopted in our framework
does not require any synchronization information due to the
nice properties of fundamental cut vertices and the index-
ing scheme of the vertex hierarchy.

Some clients may want to download the details of a mesh
in a view-dependent way but need not to perform later the
view-dependent refinement with the downloaded data. In
this case, the server can determine the cut vertices with re-
spect to the client view information and substitute them for
the fundamental cut vertices in thevsplit packets. With this
approach, thevsplit packet size is comparable to the stan-
dard view-independent transmission since we can eliminate
the information for view-dependent refinement (i.e., iii) in
Figure 3(b)) from thevsplit packets.

8. Experimental Results

To measure the performance of our framework, we ex-
perimented with a fixed navigation path where each client
downloads the base mesh and then looks around the model
from top to bottom twice.

Figure 5 shows the memory requirement of the server
in the session where a Buddha model is transmitted to a
client. As shown in Figure 5, when the vertex front is stored,
the memory usage at the server increases with time since
the number of active nodes in the vertex hierarchy at the
server are monotonously increasing during transmission.
The jump in the graph for the vertex front technique is in-
curred by the client’s request for a higher visual quality
just before the client looks around the model for the sec-
ond time. In contrast, our windowing technique is rarely
sensitive to the change of the client’s visual tolerance and
consumes approximately only 10% of memory required for
storing a vertex front. The gap between an ideal case and
our implementation is introduced by our memory alloca-
tion policy, which doubles the buffer size for windowed ac-
tive tags when the window size exceeds the current buffer
size.

Figure 6 illustrates how much data are transmitted be-
tween the server and the client in the case of the bunny
model. The accumulated packet size of the up-link is lin-
early increasing since the client sends a view information
packet each time when it has vertices to be split. In con-
trast, the accumulated packet size of the down-link is ir-
regularly increasing since the number of transmittedvsplit
packets varies from the view information of the client. Note
that after the client has looked around the bunny once, there
are no packets transmitted through the up-link as well as the
down-link, since the client has already downloaded enough
detail data to visualize the model view-dependently.

Figure 7 shows the measurements of the number of faces
and required times for rendering and view-dependent re-
finement when we download the Buddha model with our
streaming framework. Several peaks appear when we sud-
denly change the viewpoint, but the performance variations
are small when the viewpoint is smoothly changed.

0

100

200

300

400

500

600

700

800

900

1000

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211

Frames

M
em

or
y

(K
B

)

window (ideal) window (implementation) vertex front

Figure 5. Memory requirement on the server
side for a session: Our windowing technique
with active tags uses less than 10% of the
memory size required in the case when the
vertex front data structure is used.

We compared the performance of our framework with
the view-independent streaming framework in terms of vi-
sual quality and data size. Firstly, we measure how much
communication data should be transmitted in a session in
order to satisfy a fixed tolerance of the screen-space er-
ror on the client side. Secondly, we fix the data size of
the session communication and compare the visual quality
achieved with the transmitted mesh data.

Figure 8 shows the resulting meshes from our frame-
work and view-independent streaming when the de-
tail data have been transmitted until a preset tolerance
of the screen-space error is satisfied. As shown in Fig-
ure 8(a), our technique achieves visual tolerance by
transmitting smaller sized data to the client than the
view-independent streaming technique. The rendered im-
age with the view-independent streaming technique
over-satisfies the tolerance in some areas, as shown in Fig-
ure 8(b), since detail data should be transmitted in a fixed
order.

Figure 9 illustrates the visual qualities of the refined
meshes under the restriction of the communication data
size. We limit the transmitted data size to 0.5Mbytes and
stream the Buddha model with our approach and view-
independent streaming. As shown in Figure 9, the screen-

0

1

2

3

4

5

6

7

8

9

10

Time

U
pl

in
k

da
ta

 si
ze

 (K
B

)

0

100

200

300

400

500

600

D
ow

nl
in

k
da

ta
 si

ze
 (K

B
)

uplink downlink

Figure 6. Accumulated communication data
size: The client looks around the bunny
model twice with the same navigation path
and visual tolerance. On the second round,
no data are communicated between the
server and the client because all necessary
data have already been transmitted from the
server to the client on the first round.

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000

Frames

Ti
m

e
(m

se
c)

0

5000

10000

15000

20000

25000

N
um

be
r o

f f
ac

es

VD refinement rendering #faces

Figure 7. Statistics for streaming the Bud-
dha model: The times required for the view-
dependent refinement and the rendering are
dominated by the number of faces in the
view-dependently refined Buddha model.

space visual quality with view-independent streaming is
better than one with view-dependent streaming when the
viewpoint is far from the model. This is because we have
to transmit additional information, such as radius, cone of
normals, and parameters to calculate the screen space er-
ror for view-dependent refinement on the client side. How-
ever, when the viewpoint is close to the model, our frame-
work provides superior screen-space images even though
we transmit the additional information. Furthermore, if later
performance of view-dependent refinement is not desired on
the client side, as discussed in Section 7, the visual quality
of our technique is always better than the view-independent
streaming under a fixed transmitted data size. In that case,
the packet size for the view-dependent streaming would be
the same as the view-independent streaming, while most of
the transmitted triangles really help to improve the visual
quality.

9. Conclusion and Future Work

In this paper, we presented a novel view-dependent
streaming framework for irregular meshes. By adopt-
ing the truly selective refinement scheme, we could achieve
the minimal size of the transmitted data from the server to
the client while satisfying the specified visual quality. Fur-
thermore, the data size stored at the server is optimized
using the windowing technique.

Future work includes compression of thevsplit packet
with quantization and a smartvsplit packet transmission
strategy for utilizing the session idle time.

Acknowledgement

The authors would like to thank Igor Guskov for a 2-
manifold ‘Happy Budda’ mesh model [6] and Christoph
Vogel for help on multi-thread programming. The bunny
model and the original ‘Happy Budda’ models are cour-
tesy of the Stanford Computer Graphics Laboratory. This
work was supported in part by the Korea Ministry of Edu-
cation through the Brain Korea 21 program and the Game
Animation Research Center.

References

[1] S. Bischoff and L. Kobbelt. Towards robust broadcasting
of geometry data.Computers & Graphics, 26(5):665–675,
2002.

[2] P. Cignoni, C. Montani, and R. Scopigno. A comparison
of mesh simplification algorithms.Computers & Graphics,
22(1):37–54, 1998.

[3] C. Dachsbacher, C. Vogelgsang, and M. Stamminger. Se-
quential point trees.ACM Computer Graphics (Proc. SIG-
GRAPH 2003), pages 657–662, 2003.

177,120 bytes (#faces: 4,534) 827,688 bytes (#faces: 68,884)
(a) our approach (left: screen, right: another view-point) (b) view-independent streaming (left: screen, right: another view-point)

Figure 8. Comparison of view-dependent and view-independent streaming with a fixed visual quality:
(a) Our view-dependent streaming satisfies the visual quality after downloading 177,120 bytes. (b)
In contrast, view-independent streaming satisfies the same visual quality after downloading much
more data, 827,688 bytes.

[4] T. K. Dey, H. Edelsbrunner, S. Guha, and D. V. Nekhayev.
Topology preserving edge contraction. Technical Report rgi-
tech-98-018, Raindrop Geomagic, 1998.

[5] J. El-Sana and A. Varshney. Generalized view-dependent
simplification. Computer Graphics Forum (Proc. Euro-
graphics’99), 18(3):83–94, 1999.

[6] I. Guskov and Z. J. Wood. Topological noise removal. In
Proc. Graphics Interface 2001, pages 19–26, 2001.

[7] P. S. Heckbert and M. Garland. Survey of polygonal surface
simplification algorithms.SIGGRAPH ’97 Course Notes #
25, 1997.

[8] H. Hoppe. Progressive meshes.ACM Computer Graphics
(Proc. SIGGRAPH ’96), pages 99–108, 1996.

[9] H. Hoppe. View-dependent refinement of progressive
meshes.ACM Computer Graphics (Proc. SIGGRAPH ’97),
pages 189–198, 1997.

[10] H. Hoppe, T. DeRose, T. Dunchamp, J. McDonald, and
W. Stuetzle. Mesh optimization. Technical Report TR 93-
01-01, University of Washington, 1993.

[11] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Snoeyink.
Large mesh simplification using processing sequences. In
Proc. IEEE Visualization 2003, pages 465–472, 2003.

[12] A. Khodakovsky, P. Schröder, and W. Sweldens. Progres-
sive geometry compression.ACM Computer Graphics (Proc.
SIGGRAPH 2000), pages 271–278, 2000.

[13] J. Kim and S. Lee. Truly selective refinement of progressive
meshes. InProc. Graphics Interface 2001, pages 101–110,
2001.

[14] J. Kim and S. Lee. Transitive mesh space of a progressive
mesh. IEEE Trans. Visualization and Computer Graphics,
9(4):463–480, 2003.

[15] U. Labsik, L. Kobbelt, R. Schneider, and H.-P. Seidel. Pro-
gressive transmission of subdivision surfaces.Computa-
tional Geometry Journal: Theory and Applications, 15(1-
3):25–39, 2000.

[16] D. Luebke. A developer’s survey of polygonal simplifica-
tion algorithms.IEEE Computer Graphics and Applications,
21(3):24–35, 2001.

[17] R. Pajarola. Fastmesh: Efficient view-depenent meshing. In
Proc. Pacific Graphics 2001, pages 22–30. IEEE Computer
Society Press, 2001.

[18] R. Pajarola and J. Rossignac. Compressed progressive
meshes. IEEE Trans. Visualization and Computer Graph-
ics, 6(1):79–93, 2000.

[19] S. Rusinkiewicz and M. Levoy. Streaming QSplat: A viewer
for networked visualization of large, dense models. InProc.
2001 ACM Symposium on Interactive 3D Graphics, pages
63–68, 2001.

[20] R. Southern, S. Perkins, B. Steyn, A. Muller, P. Marais,
and E. H. Blake. A stateless client for progressive view-
dependent transmission. InProc. 2001 Web3D Symposium,
pages 43–49, 2001.

[21] D. S. P. To, R. W. H. Lau, and M. Green. A method for pro-
gressive and selective transmission of multi-resolution mod-
els. In Proc. ACM Symposium on Virtual Reality Software
and Technology, pages 88–95, 1999.

[22] J. Wu and L. Kobbelt. A stream algorithm for the decimation
of massive meshes. InProc. Graphics Interface 2003, pages
185–192, 2003.

[23] J. C. Xia and A. Varshney. Dynamic view-dependent simpli-
fication for polygonal models. InProc. IEEE Visualization
’96, pages 327–334, 1996.

[24] S. Yang, C.-S. Kim, and C.-C. J. Kuo. A progressive view-
dependent technique for interactive 3d mesh transmission.
IEEE Trans. Circuits and Systems for Video Technology,
page accepted for publication.

#faces: 12,654 #faces: 41,824 #faces: 41,824
(a) close-up of the Buddha face

#faces: 12,654 #faces: 41,824 #faces: 41,824
(b) look-down of the Buddha model

Figure 9. Comparison of view-dependent and view-independent streaming with a fixed communica-
tion data size (0.5MB): The images in the left column are generated by our view-dependent streaming
technique. The center images are generated by a variation of our technique, where only the cut ver-
tices are transmitted, instead of the fundamental cut vertices with the information for view-dependent
refinement, as discussed in Section 7. The right images are generated by view-independent stream-
ing. In (a), although the mesh in the left column has a smaller number of faces than that in the right
column, the left column shows a better image quality than the right one because the triangles that re-
ally help the visual quality have been transmitted. When the viewpoint is far from the model as in
(b), the left column shows a worse image quality than the right one because the amount of addi-
tional information for view-dependent refinement overwhelms the amount of data for triangles which
does not contribute the screen-space image quality. However, in both case (a) and (b), the numbers
of transmitted triangles in the middle and right columns are the same and the middle column shows
a much better image quality because most of the transmitted triangles really help to improve the vi-
sual quality.

