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Abstract
We propose a new technique for quad-dominant remeshing which separates the local regularity requirements from
the global alignment requirements by working in two steps. In the first step, we apply a slight variant of variational
shape approximation in order to segment the input mesh into patches which capture the global structure of the
processed object. Then we compute an optimized quad-mesh for every patch by generating a finite set of candidate
curves and applying a combinatorial optimization procedure. Since the optimization is performed independently
for each patch, we can afford more complex operations while keeping the overall computation times at a reason-
able level. Our quad-meshing technique is robust even for noisy meshes and meshes with isotropic or flat regions
since it does not rely on the generation of curves by integration along estimated principal curvature directions.
Instead we compute a conformal parametrization for each patch and generate the quad-mesh from curves with
minimum bending energy in the 2D parameter domain. Mesh consistency between patches is guaranteed by simply
using the same set of sample points along the common boundary curve. The resulting quad-meshes are of high-
quality locally (shape of the quads) as well as globally (global alignment) which allows us to even generate fairly
coarse quad-meshes that can be used as Catmull-Clark control meshes.

Categories and Subject Descriptors (according to ACM CCS):
I.3.5 [Computer Graphics]: Geometric algorithms, languages, and systems

1. Introduction

Remeshing algorithms are considered a fundamental com-
ponent of the contemporary geometry processing pipeline.
Traditionally, the focus of their development was mostly the
quality of the mesh elements, i.e., shape and regularity. In-
deed, various CAD and CAE applications would perform
poorly, or even crash, if a bad mesh was fed to them as
an input. Hence, improving solely the performance with re-
spect to this local quality criterion was the predominant goal
several years ago. To satisfy the requirements, compromises
were made both with regards to the complexity of the out-
put, i.e., dense remeshes were needed to provide enough de-
grees of freedom for the optimization, as well as with the
alignment of the mesh faces to the structure of the input
model, leading to the wide use of the term “unstructured”
quad/triangle mesh.

Recently, the focus of the research in this area has shifted
to a more challenging problematic: Is it possible to remesh
the input surface producing sufficiently regular faces, and

at the same time, preserve its structural characteristics? A
crucial factor for this change was the observation that ge-
ometry processing applications can significantly reduce the
production time and expense in several CAD domains, e.g,
rapid prototyping, reverse engineering and conceptual de-
sign. By supplying CAD designers with tools to perform and
test modifications without iterating the typical prototyping
process, remeshing algorithms become employed to provide
a starting point in the design of a CAD model. As a con-
sequence, global alignment of the output remesh with the
features of the processed model is now regarded as a quality
criterion at least as important as the local shape of the ele-
ments. In addition, providing low complexity meshes which
satisfy both criteria is a very important problem, since such
meshes can be easily converted to subdivision or spline con-
trol meshes which are the representation of choice in many
CAD systems.
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Figure 1: Top row: Segmentation of the Fan model into 30
regions (left) and minimum bending energy cubics computed
within them (right). Middle and bottom row: Remeshing with
target edge length about 10% and 5% of the bounding box
diagonal. Note the local regularity of the elements in the
complex top and bottom segments achieved at these low res-
olutions.

1.1. Contributions

We present a novel remeshing algorithm which separates the
local regularity optimization from the global alignment re-
quirements by splitting the process into two steps: In the first
step we segment the input mesh M into a set of structure-
preserving regions using a slight modification of the VSA
method [CSAD04]. In the second step we generate a quad-
dominant mesh inside a 2D parameter domain for every re-
gion. These meshes conform to a set of automatically de-
fined constraints (vertices & edges) at the boundaries of the
regions, which enables their seamless composition on the in-
put 3D surface. The edges of the quad-dominant mesh are
placed along smooth curves connecting pairs of constrained
vertices, while additional internal vertices are defined at the
intersection points of these smooth curves. We state explic-
itly at this point that the approximation efficiency of the out-
put meshes is not a priority of our technique. Instead, we

focus on generating meshes which are useful for CAD ap-
plications requiring conversion of scanned geometry to reg-
ular, structure-aligned quad-dominant representations, e.g.,
Catmull-Clark [CC78] subdivision surfaces. In particular,
our algorithm has the following properties:

• It is able to generate consistent quad-dominant meshes
at coarse, intermediate and dense resolutions, which are
well suited as Catmull-Clark control meshes and for FEM
computation (Fig. 1). Previous works, e.g., [ACSD∗03,
MK04], often fail to provide consistent remeshes at low
resolutions which are required for meaningful subdivision
surface modeling and approximation.

• The quality of the remeshing results can be controlled
much more robustly: Since our remeshes conform to the
input segmentation structure, features represented by the
segmentation are naturally preserved by the final remesh
as well (similar to the triangular remeshing techniques
[BK01, AMD02]). Furthermore, the local element regu-
larity is not affected by small-scale geometric features,
which are intentionally ignored when specifying a certain
region budget for the segmentation procedure.

• It does not depend on an input (curvature) tensor field
estimated on the discrete input mesh, which is often of
insufficient quality due to noise caused by the input ge-
ometry sampling process. Although the estimated tensor
field can be filtered, this process often leads to consider-
able changes of its topology and hence, incorrect place-
ment of singular points on the surface. In addition, large
isotropic areas do not bear any meaningful (in the context
of the anisotropic remeshing techniques) curvature infor-
mation which requires various workarounds, e.g, Delau-
nay triangulations [ACSD∗03] or geodesic line integra-
tion [MK04].

• Our algorithm has a simple formulation, which makes its
practical implementation relatively easy, especially when
compared to the significant engineering effort required for
implementing previous quad-dominant remeshing tech-
niques. In particular curves are no-longer integrated tan-
gentially along a predefined vector field, but instead are
simply computed as the minimum bending energy cubics
connecting two points with clamped boundary conditions.
This avoids a significant burden from an implementation
point of view, e.g., dynamic line collision detection.

1.2. Related work

The number of published remeshing techniques is vast and
a detailed survey on this topic [Owe98, AUGA05] is well
beyond the scope of this paper. Therefore we focus mainly
on works generating quad-dominant meshes or having some
structure-preserving properties.

2D Quad remeshing: The pioneering techniques for quad-
dominant remeshing were developed for FEM applications
and work by transforming a triangle mesh to a quadrilateral
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Figure 2: Left: The input CAD mesh exhibits high irregularity and significant amount of noise. Middle left: The segmentation
of the mesh into 28 regions highlights the important structural features of the model. Middle right: A set of computed minimum
bending energy curves, connecting constrained samples at the region boundaries, is selected to form an as regular as possible
quad-dominant mesh in the parameter domain of every region. Right: The quad-dominant meshes are composed together to
form the final output mesh.

one: In [BS91, OSCS98] an advancing front approach prop-
agates triangle-to-quad transformations from the boundary
to the interior of the mesh. Borouchaki and Frey [BF98] de-
veloped a method which adaptively fills a 2D polygon with
a triangle mesh and then merges triangles to quads. Shi-
mada et al. [SLI98] pack the contours of the input mesh with
square cells and convert them to a quad-dominant mesh. Our
method also employs a 2D quad-remeshing algorithm, how-
ever, instead of using a triangle-to-quad mesh conversion, we
directly construct the elements by intersecting a set of curves
in the parameter domain. This constructive approach allows
us to operate more flexibly when optimizing the regularity
of the output mesh.

Simplification: Garland and Heckbert showed in [HG99]
that the QEM simplification [GH97] asymptotically aligns
triangles with the anisotropy of the simplified model. Eck
and Hoppe [EH96] merge triangles by solving a graph
matching problem on a simplified coarse triangle mesh to
form a quad-dominant B-spline patch layout used for ap-
proximation. Clustering of the input mesh faces can be
used to generate either a mostly hexagonal mesh [BMRJ04]
which is then converted to a quad-dominant one, or a
triangular mesh [CSAD04] and later merge triangles to
quads. In [MK05] a polygonal mesh simplification method
is employed to generate structure-preserving coarse meshes
which are then partitioned to quad-dominant ones. Similarly
to these methods, our technique is able to provide structure-
preserving remeshes at coarse resolutions, however, it is able
to optimize the element regularity of the output as well.

Feature preservation: Alignment of the remesh with sharp
features was specifically pursued in [BK01]. In [AMD02]
sharp features are preserved by constraining edges to be
aligned to them during the remeshing. By placing constraints
on the boundaries between the regions, our algorithm pre-
serves the important sharp features detected during the seg-
mentation step.

Curve-based remeshing: Recently, Alliez et. al proposed
a new method [ACSD∗03] which integrates lines of princi-
pal curvature in the parameter domain of the input surface
and intersects them to form an anisotropic quad-dominant

remesh. This technique was extended in [MK04] to inte-
grate the principal lines directly on the input mesh. Dong
et al. [DKG05] replace the curvature tensor field with the
gradient of a smooth harmonic scalar field defined on the
surface. Although we do not align edges to predefined vec-
tor fields, our algorithm still relies on computing and inter-
secting curves to define the edges and vertices of the quad-
dominant mesh.

Parameterization: Gu et al. [GGH02] generate a fully reg-
ular quad mesh for genus zero surfaces by unfolding the
surface to a planar rectangle and resampling it by follow-
ing a regular grid in the parameter domain. In [SWG∗03]
this process is extended by first segmenting the surface,
and then resampling each patch separately. Finally the out-
put remeshes are zippered to form a consistent mesh. In
[KLS03] a globally smooth parameterization is defined on
a base domain obtained through structure-preserving simpli-
fication and then it is used to produce a semi-regular trian-
gular remesh. Ray et al. compute a periodic global parame-
terization [RLL∗06] of the input surface aligned to the prin-
cipal curvature vector fields and use it to produce an all quad
remesh with T-joints. In [DBG∗06] a globally smooth pa-
rameterization of the input mesh is computed using a quad
domain obtained by spectral decomposition of the surface.
Our approach also employs parameterization to sample the
input mesh in the interior of each region, however, mesh
faces are not aligned to the artificial boundary constraints
typically used to constrain the parameter domain (rectan-
gles or circles). Instead, we use [LPRM02] to compute a
boundary-free parameterization and then map edges aligned
to the features of the model to the parameter domain, which
allows us to avoid the well-known reconstruction artifacts
which usually emerge from mapping jagged patch bound-
aries in 3D to smooth boundary curves in the 2D domain.

2. Overview

Given an input triangle mesh M, we first perform a segmen-
tation S = {R0 . . .Rn} of M using a slightly modified version
of the VSA [CSAD04] method (Section 3, Fig. 2, left). For
every region we compute a conformal map using [LPRM02].
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Next, we approximate the regions’ boundaries with a net-
work of smooth 3D curves. On every boundary curve we
pick equidistantly a set of sample points which are then
mapped to the parameter domain of the regions adjacent to
it (Section 4). From this point on, we treat every region Ri
separately: First, for every pair of sample points in the pa-
rameter domain Ωi of Ri, a minimum bending energy cubic
curve is computed, so that it is orthogonal to the tangent of
the boundary curves at the sample points (Section 5). Then,
from the computed set of cubics inside Ωi, a subset L is
selected through combinatorial optimization minimizing an
energy functional E(L) (Section 6, Fig. 2, right). E(L) eval-
uates for each configuration of elements (polygons) defined
by the intersections of the curves in L a shape quality score
which penalizes non-regular elements, i.e., low (near-zero)
values correspond to “nice” quads like squares, rectangles
and parallelograms, while triangles, pentagons and distorted
quads are penalized by higher values. The distribution of the
final mesh samples is further optimized through relaxation
in the parameter domain before mapping them back to the
input mesh (Section 7).

3. Mesh segmentation

Global alignment, i.e., alignment of the elements along the
structural features of the input model, is often an underrated
factor when evaluating the quality of a remeshing algorithm.
However, it is an important property for many applications
which employ the remesh as a source for degrees of freedom
for modeling scanned objects, e.g., conceptual design and
rapid prototyping, since the mesh structure determines the
support of the deformation basis functions. In order to ensure
this property, the first step of our algorithm is to segment
the input mesh M into a set of regions S = {R0 . . .Rn} so
that every region Ri bears a semantic and geometrical mean-
ing, e.g., Ri represents a feature or a (part of a) structural
component of the surface represented by M. Therefore, it
makes sense to generate a remesh for every Ri separately —
this way we can afford to perform global mesh optimization
within the boundaries of the corresponding structural entity.

Moreover, by ensuring that the surface geometry repre-
sented by a given Ri is relatively flat, we can safely map
the corresponding cluster of faces to the plane and remesh it
there by computing an element structure independent from
the 3D geometry. This is motivated by the fact that control-
ling the shape of a set of elements is significantly more effi-
cient, robust and simple in the 2D domain than in 3D, e.g.,
testing a general 3D polygon for convexity is not a robust
process without first mapping it to a plane.

To obtain such a segmentation automatically is indeed
a challenging problem, but the recently published VSA
method [CSAD04] performs quite close to our requirements:
It generates a set of regions which align to the structure of
the input model and at the same time represent relatively flat
geometrical features. In addition, when using the L2,1 error

metric, the region boundaries are correctly aligned locally to
the sharp features of the input model. Hence, by forcing the
quad-remeshing for each region to conform to its boundaries
(Section 4), our algorithm preserves sharp features without
any additional effort.

Since the VSA algorithm is a global relaxation method,
initialized by spreading heuristically a set of seeds on the in-
put surface, it can easily get stuck at a local minimum. The
solution often can be further improved by performing region
teleporting, which helps the algorithm to escape such situ-
ations. However, teleporting might lead to worse results as
well, or more generally can be made more efficient if we
carefully monitor its performance. Therefore, we modified
slightly this aspect of the VSA algorithm: First, we track the
behavior of the global quality of the segmentation. Each tele-
porting is first performed tentatively and accepted only if we
indeed detect an improvement after a few more relaxation
steps. Otherwise the region teleporting is rejected and only
relaxation steps are further iterated until a new local mini-
mum is found.

4. Remeshing constraints setup

Although we process every region Ri separately in its param-
eter domain Ωi, we have to glue back in 3D the remeshes of
each Ri to form a consistent polygonal mesh approximat-
ing the input geometry. To resolve this dependency we fol-
low a classic strategy: we setup a set of constraints on the
boundaries between each two adjacent regions Ri and R j,
map these constraints to the corresponding parameter do-
mains Ωi and Ω j and then generate quad dominant remeshes
Qi, Q j for Ri and R j separately so that they conform to the
predefined boundary constraints. The boundary constraints
are a sequence of vertices (and edges connecting them),
smoothly approximating the shape of the edge paths defining
the boundaries of the given region Ri.

Segmentation connectivity: Our first step is to identify the
topology of the segmentation S. The vertices of S (a.k.a. an-
chor vertices) are the subset A of vertices of M, such that for
every ai ∈ A there are at least three (two if ai is boundary
vertex of M) adjacent faces belonging to different regions.
The arcs of S separate adjacent regions and are identified as
the unique path of edges E i, j

k,l on M which divides two ad-
jacent regions Ri and R j and connects two anchor points ak
and al (this index notation is required since there might be
more than one edge path separating two adjacent regions).
As all such paths E i, j

k,l represent the complete topology be-
tween the regions Ri and R j, they are the natural location
to define the consistency constraints for our quad-remeshing
procedure inside Ri and R j.

Constraints computation: Typically, an edge path dividing
two regions on the input mesh has poor smoothness proper-
ties — either due to noise, coarse mesh resolution or local
mismatch of the segmentation procedure. Therefore, if we
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are to pick the set of constrained vertices directly on this
jagged edge path, without considering the smoothness of the
resulting sample sequence, we might end up with a rather
poor set of constraints, which in turn will compromise the
quality of the quad remeshing in the interior of the region.
Among the many possible ways to resolve this issue we
choose one that fits most naturally to our framework: Given
an edge path E i, j

k,l along the set of vertices {v0 . . .vm}, where
v0 = vk and vm = vl , we approximate it in least squares sense
with a 3D cubic curve C ≡ Ci, j

k,l by minimizing the integral

L2 metric:

m−1

∑
i=0

Z si+1

si

∥∥∥∥ si+1− t
si+1− si

vi +
t− si

si+1− si
vi+1−C(t)

∥∥∥∥2

dt , (1)

under the constraints C(s0) = v0 and C(sm) = vm. Here
{s0 . . .sm} is the arc-length parameterization of the vertices
{v0 . . .vm}, i.e., si = ∑

i−1
j=0

∥∥v j − v j+1
∥∥. Although C does not

lie on the input mesh M, for practical purposes it is suffi-
ciently close to it. In case there is a hard requirement for all
samples to lie on the input mesh, a cubic curve can be always
replaced with a cubic spline curve and one can interleave the
fitting step with a projection technique like in [HP04] to get
a curve lying precisely on M.

We now sample the 3D curve C by picking r
equidistant points {c1 . . .cr} on it. These points {c0 =
v0, c1 . . . cr, cr+1 = vm} constitute the set of constraints (3D
vertex positions) which will be interpolated by the quad-
remeshes computed independently for the regions Ri and R j
in order to join them seamlessly when composing the final
output mesh.

Constraints mapping: Evaluating element shape quality
in 2D is a significantly less complicated problem than in
3D. Since our region quad-remeshing algorithm employs a
global optimization strategy for the shape quality of all gen-
erated elements, it pays off from both the efficiency and ro-
bustness point of view to initially map the region’s geometry
to the plane. Therefore, using LSCM [LPRM02], we com-
pute a parameterization domain Ωi and a conformal param-
eterization χi : Ωi → Ri for each region Ri. Note that the
unfolding distortion is typically low due to the properties of
the segmentation algorithm (Section 3).

Since the 3D positions {c1 . . .cr} sampled from a 3D cu-
bic curves Ci, j

k,l approximating an edge boundary Ek,l
i, j of Ri

do not lie in general on M (by construction only c0 and
cr+1 are points on M), we need to define their parame-
terization in the parameter domains Ωi in order to force
the quad remeshing of Ri to interpolate them. To avoid
compromising the smoothness of our constrained edge se-
quence {c0c1 . . . crcr+1} due to the distortion associated
with the parameterization, we compute a smooth planar cu-
bic curve C̃ approximating each incident edge path, this
time in the parameter domain Ωi. We use exactly the same

energy functional (1), replacing the 3D positions vi with
their 2D parameter values ṽi. Again, we impose the same
interpolation constraints C̃(s0) = ṽ0 and C̃(sm) = ṽm, but
most importantly, we keep the same arc-length parameter-
ization {s0 . . .sm}, which we used when solving (1) for
the 3D curve Ci, j

k,l . Hence, the curve C̃ is a smooth pre-
image of C inside the parameter domain Ωi. Let {t0 =
0, t1 . . . tr, tr+1 = sm} be the parameter values of the con-
strained points {c0 = v0, c1 . . . cr, cr+1 = vm}. Then, by
construction, the points {c̃0 = C̃(t0) = ṽ0, c̃1 = C̃(t1) . . . c̃r =
C̃(tr), c̃r+1 = C̃(tr+1) = ṽm} are their parameter values in
Ωi. Note that although some of the points {c̃1 . . . c̃r} might
lie outside the boundaries of the Ωi, we never need to eval-
uate the parameterization χi at {c̃0 . . . c̃r+1} — we already
know the corresponding 3D positions {c0 . . .cr+1}.

5. Curves network computation

Curve-based remeshing is a powerful paradigm for generat-
ing quad-dominant meshes, already employed in several pre-
vious methods: [ACSD∗03,MK04,DKG05]. In these works,
the curve network is computed by integration along some
estimated (or predefined) vector field on the surface. Espe-
cially for the anisotropic remeshing techniques, this integra-
tion procedure is quite complicated: One needs to continu-
ously test if the currently computed curve is going to col-
lide with itself (or another, already integrated curve) or to
approach a singular point on the vector field, where special
treatment is required. Moreover, due to the nature of the for-
ward integration methods, the trajectory of the curve cannot
be constrained to more than one point on the surface. Hence,
in our algorithm, we use a much simpler and more robust ap-
proach to define the curve network: We simply connect pairs
of boundary points (with tangents prescribed at them) by a
minimum bending energy cubic curve.

More precisely, given a segmentation region R, its pa-
rameter domain Ω and the boundary constraints (the para-
metric cubic curves {C̃0 . . .C̃n} and the sample points on
them {c̃0 . . . c̃m}), we compute O(m2) minimum bending en-
ergy cubic curves connecting each pair of boundary points
(c̃i, c̃ j). A boundary point c̃i is considered for connection iff
the internal angle αi = (c̃i−1, c̃i, c̃i+1) is larger than some
user defined threshold ψ (ψ > π/2 for all our examples).
This is motivated by the simple observation that if we are
to split αi by an edge (along a curve), then at least one of
the resulting angles will be too small and this will lead to
poorly shaped adjacent elements. A natural choice for pre-
scribing a tangent at c̃i is the normal of the corresponding
boundary curve C̃ at the same parameter value. However, if
αi is too large, that is if c̃i is a concave boundary point, then
we actually allow two tangents (and two simultaneous con-
nections) for the same boundary point, since in this case c̃i
can accommodate two adjacent (interior) elements with suf-
ficiently large angles. These two tangents are chosen so that
they trisect the angle αi (Fig. 3).
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Figure 3: Left: Computed lines for a region on the Rocker
arm model. Note the concave constrained points on the inter-
nal (hole) contour. Since the incident angle is too large, con-
nections interpolating two different tangents are allowed.
Right: Zoom-in view of a convex (top) and a concave (bot-
tom) constrained point.

To compute the minimum bending energy cubic curve bi, j
connecting the points (c̃i, c̃ j) with the corresponding tan-
gents (~qi, ~q j), we leverage its Bèzier form:

bi, j(t) = c̃iB
3
0(t)+(c̃i +λ~qi)B

3
1(t)+(c̃ j +µ~q j)B

3
2(t)+ c̃ jB

3
3(t) .

Minimizing the bi-variate non-linear functional E(λ,µ) =R 1
0 κ

2
i, j(t)dt, where κi, j is the curvature of bi, j, under the

constraints λ,µ ≥ 0 is a simple problem that can be solved
efficiently by a standard solver, e.g., [SKW85]. Avoiding
self-intersecting curves is easily achieved by conservatively
constraining the minimization procedure to ignore a search
direction whenever the segments [c̃i, c̃i + λ~qi] and [c̃ j, c̃ j +
µ~q j] of the control polygon of bi, j intersect. During the min-
imization, we do not test if bi, j is completely in the inte-
rior of (the constrained boundary loops of) R. Instead, once
the minimization is completed, we simply discard the curve
if it intersects some of the boundary loops defined by the
constrained points {c̃0 . . . c̃m}. This is usually not a problem
since due to the choice of the tangents most of the computed
curves lie inside R and hence we have sufficiently many
curves to select for our final remeshing.

6. Curve selection algorithm

The shape of the generated elements is the criterion typically
used to rate the quality of a remeshing technique. Indeed,
the mesh faces’ shape affects crucially the performance of
various applications such as subdivision surfaces modeling
and FEM. Therefore, the curve selection algorithm described
in this section aims at finding such a subset L of all computed
candidate curves internal to the region R, so that the quad-
dominated remesh Q generated by intersecting the curves in
L minimizes a shape quality functional E(L) (Fig 4).

Meshing: The meshing procedure by itself is very sim-
ple: we first compute the intersections P of all curves
in L. Each curve bi, j ∈ L is split into the edges [c̃i, p0],
[p0, p1] . . . [pn−1, pn], [pn, c̃ j] where {p0..pn}⊂P are the in-

Figure 4: Top row: Segmentation and output mesh of the Car
model. Bottom row: View of the bottom part and the wheel-
house. Whenever possible, our selection algorithm produces
a very regular mesh, consisting of well shaped quad ele-
ments.

tersection points incident with bi, j sorted according to their
parameter value with respect to bi, j. Once the edges for all
curves in L are defined, we use them together with the edges
along the boundary curves {C̃0 . . .C̃n} (which do not de-
pend on L) to create the mesh faces. After splitting all con-
cave faces, the curves L

S
{C̃0 . . .C̃n} are transformed to a

set of mesh elements Q, which we use to evaluate the energy
E(L) = ∑ f∈Q E( f ). Notice that we allow for T-joints in our
quad meshes if the incident angle is ≈ π.

Element shape measure: Various factors such as orthogo-
nality, parallelism and aspect ratio can affect the objective
notion of “quality of an element”. Hence, our shape eval-
uation function accounts for all of these factors. There are
also various criteria which can be used to evaluate the shape
of non-quad elements, e.g., triangles and pentagons. Since
we are interested in quad-dominant remeshing, our evalua-
tion measure is intolerant to such elements, especially if their
shape deviates strongly from isotropic (i.e., nearly equal an-
gles and sides). Higher valence elements are accepted in our
procedure if their excess vertices can be considered as T-
joints, otherwise such faces are penalized by high values.
Configurations including flipped faces are rejected immedi-
ately.

More precisely, given an element with valence n with in-
ternal angles {γ0 . . .γn−1} and side lengths {l0 . . . ln−1}, we
rate it according to the following formulas: In case n = 4 let
us define the following four energy factors:

• Orthogonality:

E⊥ =
3

∑
i=0

|γi−π/2|
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• Parallelism:

E‖ =
3

∑
i=0

|γi + γ(i+1)%4−π|

• Deviation from rhombus/square:

E� =
3

∏
i=0

(
2− li

max j=0..3{l j}

)
• Deviation from parallelogram/rectangle:

E� =
(

2− min{l0, l2}
max{l0, l2}

)(
2− min{l1, l3}

max{l1, l3}

)
The final shape quality measure for a quad element combines
all of these factors:

Eq =
[
(1+E⊥) · (1+E‖) ·E� ·E�

]
−1 . (2)

According to (2), a perfect square will have a score of 0,
where a highly distorted quad with small angles and unequal
sides can have a score higher than 1000. While these values
do not have any intuitive meaning, they provide a way for
us to map efficiently the shape quality of quad elements to
a numerical value. Note that, due to the length ratio mea-
sure E�, squares/rhombuses are more preferred than rect-
angles/parallelograms. From the standard quad shapes the
trapezoid receives the lowest score.

The scoring function is quite simple in the case of tri-
angles/pentagons. We simply sum the angle deviation Ea =
∑

n−1
i=0 |γi−β|, where β = π/3 if n = 3 and β = 3π/5 if n = 5,

and multiply it by some user defined weights w4 and wPT .
Setting these weights high will make our meshing procedure
prefer distorted quads over isometric triangles or pentagons.

Finally, for some applications, T-joints might present a
useful compromise between the element’s shape and its va-
lence. Hence, given an element with valence n > 4 with k T-
joints (k < n−2) we rate its shape in the same way we would
rate an element with valence n− k. However, the resulting
energy is augmented by k ·wT , where wT is a user-defined
weight. Hence, setting wT to a large number will force the
procedure to avoid T-joints, while wT = 0 makes elements
with T-joints indistinguishable from the corresponding ele-
ments with valence n− k.

6.1. Selection procedure

For clarity of the presentation, we count from here on the
concave boundary points with two tangents as two differ-
ent points with common position but different tangents. Our
task is to select a subset L of curves from the O(m2) can-
didates which leads to the best quality score E(L). Based
on the same argument by which we defined the number of
tangents per constrained vertex c̃i in Section 5, we conclude
that in the set L there should be at most one curve starting
at each boundary vertex (which we have to select from the
m− 1 candidates for each vertex). Otherwise, the internal

angle at c̃i will be split into several small angles, leading to
poorly shaped adjacent elements. This allows us to formu-
late the mesh optimization as a classical (incomplete) graph
matching problem, i.e., finding a set of edges without com-
mon vertices that minimize some cost functional.

However, our setup is particular difficult because we can-
not assign constant weights to each connecting curve sepa-
rately. Instead the functional E(·) sums over all faces ∈ Q,
which in turn depend on several curves each. Hence there is
little hope that a polynomial time algorithm exists for this
task. Notice that the mere enumeration of all graph match-
ings in a complete graph has already O(n!) complexity in the
number of vertices.

Overview: Since we cannot hope to find a practical algo-
rithm converging to the global minimum of E(·), we pro-
pose a strategy which aims at finding at least a good local
minimum. Typically, such problems are solved by first find-
ing an initial solution (phase I of our algorithm) and then
improving it by “descending” in the direction of the largest
decrease of the target functional until a local minimum is
found (phase II). In addition, we use a third step (phase III),
which attempts to escape a local minimum by evaluating a
set of configurations (not necessarily better than the existing
one), and choosing the one that leads to the lowest energy.

Phase I: To find an initial solution, we select “greedily” a
subset of all curves using a simple heuristic dependent only
on the end points of the curve (Fig. 5). Curves are selected
until all constrained points are saturated, i.e., every boundary
point is connected, or until all available curves are processed.

Figure 5: Left: evaluating the angle deviation ∑
3
i=0 |ξi −

π/2| scores how orthogonal the line bi, j is to the constrained
edges at its end points. Middle: Due to the absence of any
other internal information, i.e, an element structure, this
simple heuristic is used to generate an initial solution for
our selection algorithm. However it can often lead to a sub-
optimal solution. Right: Our “steepest descent” minimiza-
tion technique easily corrects the meshing by swapping the
two wrong lines.

Phase II: Once a solution is available, we optimize it by per-
forming a “steepest descent” minimization, iteratively swap-
ping (Fig. 6) or reconnecting (Fig. 7) some of the curves in
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L iff by this the energy E(L) decreases. At each iteration we
evaluate all possible steps, compute the energy change for
each candidate and choose the one that yields the largest de-
crease of E(L). This phase concludes when no “downhill”
moves are possible anymore, i.e., we have converged to a
local minimum.

Figure 6: Swapping curves: the pair of curves (bk, j,bi,l)⊂ L
(left) can be replaced by the pair (bi, j,bk,l) (middle) or the
pair (b j,l ,bi,k) (right).

Phase III: The third and final phase attempts to escape from
the current local minimum by first removing all curves from
L which have an intersection point incident with a small an-
gle (< π/4). After all such “bad” curves are removed, we
iteratively saturate the unconnected boundary vertices by
adding at each iteration the curve which yields the small-
est energy value. After each addition, phase II is again exe-
cuted in order to optimize the new set of curves, potentially
leading to a better configuration. This process is terminated
as in phase I — whenever all boundary points are saturated
or all available curves are processed. Since adding a curve
can actually lead to an increment of E(L) (even after opti-
mization), a backup of the best configuration found up to the
moment is kept at all times and is restored at the end the
procedure if needed. This might lead to several unconnected
points, which potentially generates T-joints or obtuse angles
in the final mesh.

Figure 7: Reconnecting curve: The curve bi, j ∈ L (left) is
replaced by the bi,k (right), connecting c̃i to the currently
unlinked vertex c̃k.

7. Post-processing

Since samples in the interior of a given region R are gener-
ated only at the intersections of the selected cubic curves bi, j,
their location might be suboptimal. Therefore once the selec-
tion process is complete, we relax the mesh structure in the
parameter domain by Laplacian smoothing. In some cases,
this simple procedure improves the distribution of the mesh
samples quite significantly. Once the smoothing is complete,
we evaluate the parameterization of the intersection points
and find the corresponding 3D positions.

Note that due to the method we used in Section 4 to map
the boundary curves and points to the parameter space, they
(usually) do not lie entirely inside Ω. Hence it is possible
(although highly unlikely) that an intersection point cannot
be located in Ω, i.e., in the parameterization of a face be-
longing to R. There are several possible ways to resolve this
issue. We simply represent such points using barycentric co-
ordinates with respect to the closest face of R in Ω and then
evaluate the coordinates in 3D. This linear extrapolation is
sufficient, since in practice the boundary curves lie close to
the parameter domain of R and therefore the extrapolation
error is small.

Figure 9: Top row: The Alpha model and its segmentation.
Middle and bottom row: Output meshes at two resolutions.

8. Results

We tested our algorithm on several models, mostly mechan-
ical objects and parts, which are difficult to process by pre-
vious techniques. Our two-step remeshing method has two
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Figure 8: Segmentation and output meshes of the Rocker arm model at two resolutions.

Model input |S| output regularity max val. time δ w4/wPT /wT
F/V F/V F%/V% F/V mm:ss

Fan (Fig. 1) 12K/6.5K 30 185 / 193 94% / 76% 5 / 6 00:18 10% 500 / 500 / 500
— — 30 484 / 501 92% / 87% 6 / 6 01:30 5% 100 / 100 / 100

Drill-hole(Fig. 2) 57K/28K 28 684 / 685 96% / 95% 5 / 6 02:27 5% 40 / 40 / 100
Rocker arm (Fig. 8) 80K/40K 41 431 / 416 84% / 86% 6 / 5 01:21 6% 20 / 70 / 70

— — 41 1096 / 1081 90% / 92% 5 / 6 06:31 3% 30 / 30 / 100
Car (Fig. 4) 5K/2.5K 28 546 / 559 92% / 90% 6 / 5 07:20 4% 40 / 40 / 40

Alpha (Fig. 9) 18K/9K 51 544 / 537 86% / 83% 6 / 6 05:37 5% 40 / 40 / 100
— — 51 1428 / 1425 92% / 90% 5 / 6 34:49 2.5% 40 / 40 / 100

Feline (Fig. 10) 100K/50K 92 571 / 554 64% / 70% 5 / 7 02:04 5% 40 / 40 / 100
— — 106 1756 / 1749 76% / 84% 6 / 7 13:45 2% 20 / 20 / 100

Table 1: Remeshing statistics for various models: The regularity numbers show the percentage of all faces/vertices which have
valence 4. Valence 6 faces are pentagons with one T-joint, or quads with two T-joints. δ is the target edge distance between
samples along the region boundaries and is given as percentage of the bounding box diagonal of the input mesh. All timings
are taken on 2.8GHz Pentium IV PC.

properties which make it especially useful for such cases:
Due to the L2,1 metric, all important sharp features are iden-
tified and preserved by the remeshing because boundary con-
straints are placed at the sharp features dividing adjacent
regions on the surface. Furthermore, quality quad-dominant
meshes for (nearly) flat areas are produced, since our method
does not rely on anisotropic curvature tensor information to
generate the quad elements.

Statistics about output complexities, performance and in-
put parameters are given in Table 1. We set the weights af-
fecting the penalty of non-quad elements, e.g., triangles and
pentagons, according to the following strategy: For coarse
output meshes, higher weights are used to force the algo-
rithm to generate as regular as possible meshes. For denser
output meshes, more flexibility is provided by setting lower
values, otherwise some distorted quads might appear.

Limitations: Due to the high complexity of the combina-
torial optimization, the computation of dense quad-meshes
for large regions can take up to several minutes (see Table
1). This dependence on the output mesh complexity results

Figure 10: Output meshes of the Feline model at two res-
olutions. The results for this organic shape do not exhibit
the same regularity as the remeshes of the CAD examples,
however, they are still suitable as a starting point for a sub-
division control mesh design.
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from the fact that the number of possible curve network con-
figurations increases drastically with the number of candi-
date curves. One way to reduce the computation time would
be to start with a finer initial segmentation, yielding more
segments with smaller complexity each. This however could
lead to an inferior quality of the final output.

On the implementation level there is still some room for
improvement, e.g., whenever a change in the set of selected
lines L is made, we rebuild the connectivity of the whole
processed region, i.e., edge and face creation. The remesh-
ing energy is evaluated from scratch as well. A more sophis-
ticated implementation could just modify the affected (split
or merged) faces and update the energy accordingly.

Another issue is that the user can only control the output
resolution along the region boundaries and not in the interior
of the segments. This could be addressed in the future by tak-
ing additional constraints in the interior of the regions into
account or by splitting regions based on a 2D compactness
criterion rather than a flatness criterion alone.

9. Future work

An interesting route for further research is the improvement
of our curves selection strategy. For instance, genetic algo-
rithms often prove their effectiveness when employed to find
a nearly global minimum in a large discrete space such as
the one described in Section 6.1. Another possible option
are the “Branch and Bound” methods which could use some
geometrical heuristic to partition the problem and then find
optimal solutions for the resulting, lower complexity sub-
problems.
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