/*===========================================================================*\ * * * OpenFlipper * * Copyright (c) 2001-2015, RWTH-Aachen University * * Department of Computer Graphics and Multimedia * * All rights reserved. * * www.openflipper.org * * * *---------------------------------------------------------------------------* * This file is part of OpenFlipper. * *---------------------------------------------------------------------------* * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted provided that the following conditions * * are met: * * * * 1. Redistributions of source code must retain the above copyright notice, * * this list of conditions and the following disclaimer. * * * * 2. Redistributions in binary form must reproduce the above copyright * * notice, this list of conditions and the following disclaimer in the * * documentation and/or other materials provided with the distribution. * * * * 3. Neither the name of the copyright holder nor the names of its * * contributors may be used to endorse or promote products derived from * * this software without specific prior written permission. * * * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER * * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * * \*===========================================================================*/ #pragma once #include "VertexDeclaration.hh" #include #include #include #include #include #include /* Mesh buffer assembler: Builds a pair of vertex and index buffer based on a poly mesh. - flexible processing pipeline - uses index mapping only -> lower memory consumption - independent of OpenMesh, OpenGL - usage 1. Create a vertex declaration to specify your wanted vertex format, such as float3 pos, float3 normal.. 2. Set your vertex data. Example in (float3 pos, float3 normal, float2 texc) format: float VertexPositions[100*3] = {..}; float VertexNormals[120*3] = {..}; float VertexUV[80*2] = {..}; drawMesh->setVertices(100, VertexPositions, 12); drawMesh->setNormals(120, VertexNormals, 12); drawMesh->setTexCoords(80, VertexUV, 8); Note that different indices for vertices, normals and texcoords are allowed, hence the various element numbers 100, 120 and 80. Example 2 (interleaved input) float Vertices[100] = { x0, y0, z0, u0, v0, nx0, ny0, nz0, x1, y1, z1, u1, v1, nx1, ny1, nz1, ... }; The stride is 8*4 = 32 bytes. We use parameters as follows. drawMesh->setVertices(100, Vertices, 32); drawMesh->setNormals(100, (char*)Vertices + 20, 32); drawMesh->setTexCoords(100, (char*)Vertices + 12, 32); 3. Set index data. Two methods are supported for this. You can either specify one index set for all vertex attributes or use another index buffer for each vertex attribute. The latter means having different indices for vertex and texcoords for example. drawMesh->setNumFaces(32, 96); for each face i int* faceVertexIndices = {v0, v1, v2, ...}; setFaceVerts(i, 3, faceVertexIndices); 4. finish the initialization by calling the build() function */ namespace ACG{ class ACGDLLEXPORT MeshCompilerFaceInput { // face data input interface // allows flexible and memory efficient face data input public: MeshCompilerFaceInput(){} virtual ~MeshCompilerFaceInput(){} virtual int getNumFaces() const = 0; /** Get total number of indices in one attribute channel. * * i.e. total number of position indices of the whole mesh */ virtual int getNumIndices() const = 0; /** Get number of vertices per face. * @param _faceID face index */ virtual int getFaceSize(const int _faceID) const = 0; /** Get a single vertex-index entry of a face. * * @param _faceID face index * @param _faceCorner vertex corner of the face * @param _attrID attribute channel * @return index-data if successful, -1 otherwise */ virtual int getSingleFaceAttr(const int _faceID, const int _faceCorner, const int _attrID) const; /** Get an index buffer of a face for a specific attribute channel. * @param _faceID face index * @param _attrID attribute channel * @param _out pointer to output buffer, use getFaceSize(_faceID) to get the size needed to store face data * @return true if successful, false otherwise */ virtual bool getFaceAttr(const int _faceID, const int _attrID, int* _out) const {return false;} /** Get an index buffer of a face for a specific attribute channel. * @param _faceID face index * @param _attrID attribute channel * @return array data of size "getFaceSize(_faceID)", allowed to return 0 when array data not permanently available in memory */ virtual int* getFaceAttr(const int _faceID, const int _attrID) const {return 0;} // Adjacency information can be provided if it has been generated already. // Otherwise it will be generated on the fly when needed, which might be time consuming. /** Get the number of adjacent faces for a vertex. * @param _vertexID vertex index * @return number of adjacent faces, return -1 if adjacency information unavailable */ virtual int getVertexAdjCount(const int _vertexID) const {return -1;} /** Get the index of an adjacent face for a vertex. * @param _vertexID vertex index * @param _k adjacency list entry in range [0, .., adjCount - 1] * @return face id of adjacent face, return -1 if adjacency information is available */ virtual int getVertexAdjFace(const int _vertexID, const int _k) const {return -1;} }; class ACGDLLEXPORT MeshCompilerDefaultFaceInput : public MeshCompilerFaceInput { public: MeshCompilerDefaultFaceInput(int _numFaces, int _numIndices); virtual ~MeshCompilerDefaultFaceInput(){} int getNumFaces() const {return numFaces_;} int getNumIndices() const {return numIndices_;} int getFaceSize(const int _faceID) const {return faceSize_[_faceID];} int getSingleFaceAttr(const int _faceID, const int _faceCorner, const int _attrID) const; bool getFaceAttr(const int _faceID, const int _attrID, int* _out) const; void dbgWriteToObjFile(FILE* _file, int _posAttrID = 0, int _normalAttrID = -1, int _texcAttrID = -1); void setFaceData(int _faceID, int _size, int* _data, int _attrID = 0); protected: int numFaces_, numIndices_; // input data is stored in a sequence stream // face offsets may not be in sequence std::vector faceOffset_; std::vector faceSize_; // face index buffer for each vertex attribute std::vector faceData_[16]; }; class ACGDLLEXPORT MeshCompilerVertexCompare { public: MeshCompilerVertexCompare(double _d_eps = 1e-4, float _f_eps = 1e-4f) : d_eps_(_d_eps), f_eps_(_f_eps) {} virtual bool equalVertex(const void* v0, const void* v1, const VertexDeclaration* _decl); const double d_eps_; const float f_eps_; }; class ACGDLLEXPORT MeshCompiler { public: explicit MeshCompiler(const VertexDeclaration& _decl); virtual ~MeshCompiler(); //=========================================================================== /** @name Vertex Data Input * @{ */ //=========================================================================== /** set input vertex positions * * @param _num Number of vertex positions * @param _data Pointer to vertex data * @param _stride Difference in bytes between two vertex positions in _data. Default value 0 indicates a tight float3 position array without any other data or memory alignment. * @param _internalCopy Memory optimization flag: select true if the provided data address is only temporarily valid. Otherwise an internal copy must be made. * @param _fmt data format of one element (must be set if input data does not match vertex declaration) * @param _elementSize number of elements per attribute (i.e. 3 for vec3 .., -1 if unknown) */ void setVertices(size_t _num, const void* _data, size_t _stride = 0, bool _internalCopy = false, GLuint _fmt = 0, int _elementSize = -1); /** set input normals * * @param _num Number of normals * @param _data Pointer to normals data * @param _stride Difference in bytes between two normals positions in _data. Default value 0 indicates a tight float3 position array without any other data or memory alignment. * @param _internalCopy Memory optimization flag: select true if the provided data address is only temporarily valid. Otherwise an internal copy must be made. * @param _fmt data format of one element (must be set if input data does not match vertex declaration) * @param _elementSize number of elements per attribute (i.e. 3 for vec3 .., -1 if unknown) */ void setNormals(size_t _num, const void* _data, size_t _stride = 0, bool _internalCopy = false, GLuint _fmt = 0, int _elementSize = -1); /** set input texture coords * * @param _num Number of texture coords * @param _data Pointer to texture coord data * @param _stride Difference in bytes between two texture coordinate positions in _data. Default value 0 indicates a tight float3 position array without any other data or memory alignment. * @param _internalCopy Memory optimization flag: select true if the provided data address is only temporarily valid. Otherwise an internal copy must be made. * @param _fmt data format of one element (must be set if input data does not match vertex declaration) * @param _elementSize number of elements per attribute (i.e. 3 for vec3 .., -1 if unknown) */ void setTexCoords(size_t _num, const void* _data, size_t _stride = 0, bool _internalCopy = false, GLuint _fmt = 0, int _elementSize = -1); /** Set custom input attribute. * * Alternatively allocates an internal buffer only, such that data can be provided via setAttrib(). * @param _attrIdx Attribute id from VertexDeclaration * @param _num Number of attributes * @param _data Input data buffer, may be null to only allocate an internal buffer * @param _stride Offset difference in bytes to the next attribute in _data. Default value 0 indicates no data alignment/memory packing. * @param _internalCopy Create an internal buffer and make a copy _data * @param _fmt data format of one element (must be set if input data does not match vertex declaration) * @param _elementSize number of elements per attribute (i.e. 3 for vec3 .., -1 if unknown) */ void setAttribVec(int _attrIdx, size_t _num, const void* _data, size_t _stride = 0, bool _internalCopy = false, GLuint _fmt = 0, int _elementSize = -1); /** Set single custom input attributes. * * An internal buffer for the requested attribute must be allocated before using this function. See setAttribVec() * @param _attrIdx Attribute id from VertexDeclaration * @param _v Buffer id of the single attribute * @param _data attribute data */ void setAttrib(int _attrIdx, int _v, const void* _data); /** Get number of attributes in an input buffer * * @param _attrIdx Attribute id from VertexDeclaration */ int getNumInputAttributes(int _attrIdx) const; /** @} */ //=========================================================================== /** @name Flexible Face Data Input * @{ */ //=========================================================================== /** Set Face data input * * Making use of the MeshCompilerFaceInput interface completly overrides the default input behavior. * Any subsequent call to default input data functions such as setNumFaces(), setFaceVerts() etc. will be ignored * * @param _faceInput user defined face input (no internal copy made, do not delete while using MeshCompiler) */ void setFaceInput(MeshCompilerFaceInput* _faceInput); /** @} */ //=========================================================================== /** @name Default Face Data Input * @{ */ //=========================================================================== /** \brief Set number of faces and indices if known by user * * User may give a rough estimate of face/index count. * A more accurate estimation improves efficiency: too low numbers result in performance hit, too high numbers in memory consumption * @param _numFaces Number of faces. Value 0 accepted at cost of performance * @param _numIndices Number of indices, i.e. 3 * numFaces for triangle meshes. Value 0 accepted at cost of performance */ void setNumFaces(const int _numFaces, const int _numIndices); /** \brief Set index buffer for a triangle mesh. * * This should only be used if the input vertex buffer is interleaved already. * @param _numTris Number of triangles. * @param _indexSize Size in bytes of one index. * @param _indices Pointer to a buffer containing the index data. */ void setIndexBufferInterleaved(int _numTris, int _indexSize, const void* _indices); /** \brief Set vertex ids per triangle. * * @param _i Face ID * @param _v0 1st vertex id * @param _v1 2nd vertex id * @param _v2 3rd vertex id */ void setFaceVerts(int _i, int _v0, int _v1, int _v2); /** \brief Set vertex ids per face. * * @param _i Face id * @param _faceSize Size of face, ie. number of vertices of face * @param _v Vertex ids */ void setFaceVerts(int _i, int _faceSize, int* _v); /** \brief Set normal ids per triangle. * * @param _i Face ID * @param _v0 1st normal id * @param _v1 2nd normal id * @param _v2 3rd normal id */ void setFaceNormals(int _i, int _v0, int _v1, int _v2); /** \brief Set normal ids per face. * * @param _i Face id * @param _faceSize Size of face, ie. number of vertices of face * @param _v Normal ids */ void setFaceNormals(int _i, int _faceSize, int* _v); /** \brief Set texcoord ids per triangle. * * @param _i Face ID * @param _v0 1st texcoord id * @param _v1 2nd texcoord id * @param _v2 3rd texcoord id */ void setFaceTexCoords(int _i, int _v0, int _v1, int _v2); /** \brief Set texcoord ids per face. * * @param _i Face id * @param _faceSize Size of face, ie. number of vertices of face * @param _v Texcoord ids */ void setFaceTexCoords(int _i, int _faceSize, int* _v); /** \brief Set attribute ids per triangle. * * @param _i Face id * @param _v0 1st element id * @param _v1 2nd element id * @param _v2 3rd element id * @param _attrID Which attribute: index of VertexDeclaration element array */ void setFaceAttrib(int _i, int _v0, int _v1, int _v2, int _attrID); /** \brief Set attribute ids per face. * * @param _i Face id * @param _faceSize Size of face, ie. number of vertices of face * @param _v Element ids * @param _attrID Which attribute: index of VertexDeclaration element array */ void setFaceAttrib(int _i, int _faceSize, int* _v, int _attrID); /** @} */ //=========================================================================== /** @name Face Grouping and Subsets * @{ */ //=========================================================================== /** \brief Specify face groups. * * Faces with the same group ID will be chunked together in the sorting process. * This feature may be used for material/texture subsets. * @param _i Face ID * @param _groupID Custom group ID */ void setFaceGroup(int _i, short _groupID); // subset/group management struct Subset { int id; // subset id unsigned int startIndex; // 1st occurrence of group in index buffer unsigned int numTris; // number of tris belonging to subset in index buffer unsigned int numFaces; // number of faces belonging to subset unsigned int startFace; // index into sorted list of faces }; /** \brief get subset ID of a group * * @param _groupID Id of the group * @return Subset Id */ int findGroupSubset(int _groupID); /** \brief Get Face Group of the given face * * @param _faceID Id of the face * @return Group Id */ int getFaceGroup(int _faceID) const; /** \brief Get Group Id of the triangle * * @param _triID Id of the triangle * @return Group of the triangle */ int getTriGroup(int _triID) const; /** \brief Get the number of subsets * * @return Number of subsets */ int getNumSubsets() const {return (int)subsets_.size();} /** \brief get a specific subset * * @param _i Id of the subset * @return The subset */ const Subset* getSubset(int _i) const; /** @} */ //=========================================================================== /** @name Mesh Compilation * @{ */ //=========================================================================== /** \brief Build vertex + index buffer. * * @param _weldVertices Compare vertices and attempt to eliminate duplicates. High computation cost * @param _optimizeVCache Reorder faces for optimized vcache usage. High computation cost * @param _needPerFaceAttribute User wants to set per-face attributes in draw vertex buffer. Per-face data can be stored in the provoking vertex of each face. Low computation cost * @param _keepIsolatedVertices Isolated vertices should not be discarded in the output vertex buffer */ void build(bool _weldVertices = false, bool _optimizeVCache = true, bool _needPerFaceAttribute = false, bool _keepIsolatedVertices = false); /** Get number of vertices in final buffer. */ int getNumVertices() const {return numDrawVerts_;} /** See glProvokingVertex() * * Specifiy the vertex to be used as the source of data for flat shading. * The default value is 2, meaning that the last vertex of each triangle will be used. * setProvokingVertex() must be called prior to build(), if a different provoking vertex is desired. * Additionally build() has to set its _needPerFaceAttribute parameter to true to enable provoking vertices. * The provoking vertex of a face is a vertex, which is not shared with any other face in the mesh. * * @param _v triangle vertex where the provoking vertex should be stored [0, 1, 2] */ void setProvokingVertex(int _v); /** See glProvokingVertex() * * @return provoking vertex id */ int getProvokingVertex() const {return provokingVertex_;} /** \brief Get vertex buffer ready for rendering. * * Query final vertex buffer data. * Support vertex buffer batch uploads. * @param _dst [out] Pointer to memory address where the vertex buffer should be copied to * @param _offset Begin of vertex buffer batch * @param _range Size of vertex buffer batch. Copies rest of buffer if _range < 0. */ void getVertexBuffer(void* _dst, const int _offset = 0, const int _range = -1); /** Get index buffer ready for rendering. */ const int* getIndexBuffer() const {return indices_.data();} /** \brief Get index buffer with adjacency information ready for rendering. * * This index buffer can be used to render in GL_TRIANGLES_ADJACENCY mode. * For each triangle, it contains the 3 neighboring triangles with a shared edge in addition to the triangle vertices. * Each triangle stores 6 indices: * 0 - first vertex of triangle * 1 - opposite vertex to first edge of adjacent triangle * 2 - second vertex of triangle * 3 - opposite vertex to second edge of adjacent triangle * 4 - third vertex of triangle * 5 - opposite vertex to third edge of adjacent triangle * * 5___4___3 * \ /\ / * \/__\/ * 0\ /2 * \/ * 1 * * * * @param _dst [out] Pointer to memory address where the 32bit index buffer should be copied to. Must have size of at least 6 * numTris * 4 bytes * @param _borderIndex index to use for border edges (missing adjacent triangles) */ void getIndexAdjBuffer(void* _dst, const int _borderIndex = -1); /** \brief Slow brute-force version of getIndexAdjBuffer * * Computes index buffer with adjacency information, but uses a much simpler algorithm. * Runtime = O(n^2), but this can be used to verify the result of getIndexAdjBuffer. * Results from brute-force and optimized algorithm must be equal for meshes where no edge is shared by more than two triangles. * * @param _dst [out] Pointer to memory address where the 32bit index buffer should be copied to. Must have size of at least 6 * numTris * 4 bytes * @param _borderIndex index to use for border edges (missing adjacent triangles) */ void getIndexAdjBuffer_BruteForce(void* _dst, const int _borderIndex = -1); /** Get number of triangles in final buffer. */ int getNumTriangles() const {return numTris_;} /** Get number of input faces. */ int getNumFaces() const; /** \brief Get size of input face * * @param _i Index * @return Size */ inline int getFaceSize(const int _i) const { return int(faceSize_.empty() ? maxFaceSize_ : faceSize_[_i]); } /** Get Vertex declaration. */ const VertexDeclaration* getVertexDeclaration() const {return &decl_;} /** Get vertex in final draw vertex buffer. */ void getVertex(int _id, void* _out) const; /** Get index in final draw index buffer. */ int getIndex(int _i) const; /** @} */ //=========================================================================== /** @name Input/Output ID mapping * @{ */ //=========================================================================== /** Mapping from draw vertex id -> input vertex id * * @param _i Vertex ID in draw buffer * @param _faceID [out] Face ID in face input buffer * @param _cornerID [out] Corner of face corresponding to vertex. * @return Position ID in input buffer */ int mapToOriginalVertexID(const size_t _i, int& _faceID, int& _cornerID) const; /** Mapping from draw tri id -> input face id * * @param _triID Triangle ID in draw index buffer * @return Input Face ID */ int mapToOriginalFaceID(const int _triID) const; /** Get pointer to the lookup table mapping from tri id -> input face id * * @return ptr to address of lookup table with size getNumTriangles() */ const int* mapToOriginalFaceIDPtr() const; /** Mapping from input vertex id -> draw vertex id * * @param _faceID Face ID in input data * @param _cornerID Corner of face * @return Draw Vertex ID in output vertex buffer */ int mapToDrawVertexID(const int _faceID, const int _cornerID) const; /** Mapping from input Face id -> draw triangle id * * @param _faceID Face ID in input data * @param _k triangle no. associated to face, offset 0 * @param _numTrisOut [out] Number of triangles associated to face (if input face was n-poly) * @return Draw Triangle ID in output vertex buffer */ int mapToDrawTriID(const int _faceID, const int _k = 0, int* _numTrisOut = 0) const; /** @} */ //=========================================================================== /** @name Triangulation properties * @{ */ //=========================================================================== /** Test if the input mesh consists of triangles only. */ bool isTriangleMesh() const; /** Test if a triangle edge is a face edge from the input buffer. * * When a convex n-poly is subdivided into (n-2) triangles, new edges are created which do not exist in the input mesh. * This function identifies if an edge was already existant in the input mesh or added during triangulation. * @param _triID triangle ID in draw buffer * @param _edge edge of triangle, edge ordering: v0-v1, v1-v2, v2-v0 * @return true if the edge is an edge from an input face, false otherwise */ bool isFaceEdge(const int _triID, const int _edge) const; /** @} */ private: // compute adjacency information: vertex -> neighboring faces (, face -> neighboring faces [removed] ) void computeAdjacency(bool _forceRecompute = false); // convert per-face vertices to unique ids void splitVertices(); private: // small helper functions /** i: face index j: corner index _out: output vertex (index for each attribute) */ void getInputFaceVertex(const int _face, const int _corner, int* _out) const; /** i: face index j: corner index _out: output vertex (index for each attribute) post welding operation */ void getInputFaceVertex_Welded(const int _face, const int _corner, int* _out) const; /** i: face index j: corner index _out: output vertex address (vertex data) */ void getInputFaceVertexData(const int _face, const int _corner, void* _out) const; inline int getInputIndex( const int& _face, const int& _corner, const int& _attrId ) const { return faceInput_->getSingleFaceAttr(_face, _corner, _attrId); // alternatively avoid virtual function call at cost of higher memory overhead ( could not confirm any run-time difference ) // to use this, uncomment code in prepareData() that initializes faceData_ array as well // return faceData_[(getInputFaceOffset(_face) + _corner) * numAttributes_ + _attrId]; } private: // ==================================================== // input data // vertex buffer input struct ACGDLLEXPORT VertexElementInput { VertexElementInput(); ~VertexElementInput(); /// mem alloc if attribute buffer managed by this class char* internalBuf; /** address to data input, will not be released by MeshCompiler - may be an external address provided by user of class */ const char* data; /// # elements in buffer int count; /// offset in bytes from one element to the next int stride; /// size in bytes of one attribute int attrSize; // vertex data access /// element data format GLuint fmt; /// number of ints/floats/bytes per element int elementSize; /// read a vertex element void getElementData(int _idx, void* _dst, const VertexElement* _desc) const; }; // input vertex data VertexElementInput input_[16]; // convenient attribute indices int inputIDPos_; // index of positions into input_ array int inputIDNorm_; // index of normals into input_ array int inputIDTexC_; // index of texcoords into input_ array int numAttributes_; VertexDeclaration decl_; // input face data int numFaces_, numIndices_; std::vector faceStart_; // start position in buf for each face std::vector faceSize_; // face size, copy of faceInput_->getFaceSize() for better performance std::vector faceData_; size_t maxFaceSize_; // max(faceSize_) bool constantFaceSize_; std::vector faceGroupIDs_; // group id for each face (optional input) int curFaceInputPos_; // current # indices set by user MeshCompilerFaceInput* faceInput_; // face data input interface bool deleteFaceInputeData_; // delete if face input data internally created std::vector faceBufSplit_; // mapping from (faceID, cornerID) to interleaved vertex id after splitting std::vector faceSortMap_; // face IDs sorted by group; maps sortFaceID -> FaceID int provokingVertex_; // provoking vertex of each triangle bool provokingVertexSetByUser_; // was the provoking vertex selected by user or set to default? int numTris_; std::vector triIndexBuffer_; // triangulated index buffer with interleaved vertices // IDs of isolated vertices: index into input position buffer std::vector isolatedVertices_; // face grouping with subsets for per-face materials int numSubsets_; std::vector subsets_; std::map subsetIDMap_; // maps groupId -> subsetID // ===================================================== struct ACGDLLEXPORT AdjacencyList { AdjacencyList() : start(0), count(0), buf(0), bufSize(0), num(0) {} ~AdjacencyList() { delete [] start; delete [] buf; delete [] count; } void init(int n); int getAdj(int i, int k) const; int getCount(int i) const; void clear(); int* start; // index to adjacency buffer unsigned char* count; // # of adjacent faces int* buf; // adjacency data int bufSize; // size of buf int num; // # adjacency entries // void dbgdump(FILE* file) const; void dbgdump(std::ofstream& file) const; }; // adjacency list: vertex -> faces AdjacencyList adjacencyVert_; // adjacency access interface (choosing between user input / self generated data) int getAdjVertexFaceCount(int _vertexID) const; int getAdjVertexFace(int _vertexID, int _k) const; struct WeldListEntry { int faceId; int cornerId; int refFaceId; int refCornerId; }; struct ACGDLLEXPORT WeldList { void add(const int _face, const int _corner); std::vector< WeldListEntry > list; MeshCompiler* meshComp; MeshCompilerVertexCompare* cmpFunc; char* workBuf; }; static MeshCompilerVertexCompare defaultVertexCompare; MeshCompilerVertexCompare* vertexCompare_; // mapping from -> // std::vector< std::pair > vertexWeldMap_; // std::pair gets padded to 8 bytes std::vector vertexWeldMapFace_; std::vector vertexWeldMapCorner_; struct ACGDLLEXPORT VertexSplitter { // worst case split: num entries in vertex adj list // estBufferIncrease: if numWorstCase == 0, then we estimate an increase in vertex buffer by this percentage VertexSplitter(int numAttribs, int numVerts, int numWorstCase = 0, float estBufferIncrease = 0.5f); ~VertexSplitter(); /// returns a unique index for a vertex-attribute combination int split(int* vertex); /// check if vertex is isolated with a complete splitting list bool isIsolated(const int vertexPosID); int numAttribs; /// number of vertex combinations currently in use int numVerts; /// number of input vertex positions const int numBaseVerts; /** split list format: for each vertex: [next split, attribute ids] next split: -1 -> not split yet i -> index into split list for next combination with the same vertex position id (single linked list) attribute ids: array of attribute indices into input buffers, that makes up the complete vertex -1 -> vertex not used yet (relevant for split() only) */ // int* splits; std::vector splits; // split list access int getNext(const int id); int* getAttribs(const int id); void setNext(const int id, const int next); void setAttribs(const int id, int* attr); // debugging metrics int dbg_numResizes; int dbg_numSplits; }; VertexSplitter* splitter_; // ===================================================== // mappings /// maps from triangle ID to sorted face ID std::vector triToSortFaceMap_; /// maps from optimized tri ID to unoptimized tri ID std::vector triOptMap_; /// vertex index in vbo -> input (face id, corner id) pair , also inverse of faceBufSplit_ // std::vector > vertexMap_; // sizeof( std::pair ) = 8!! std::vector vertexMapFace_; std::vector vertexMapCorner_; /// input face index -> output tri index std::vector faceToTriMap_; std::vector faceToTriMapOffset_; /// output tri index -> input face index std::vector triToFaceMap_; // ===================================================== // final buffers used for drawing /// # vertices in vbo size_t numDrawVerts_; /// # isolated vertices size_t numIsolatedVerts_; /// index buffer std::vector indices_; private: // return interleaved vertex id for input buffers int getInputIndexSplit(const int _face, const int _corner) const; void setInputIndexSplit(const int _face, const int _corner, const int _val); int mapTriToInputFace(const int _tri) const; int getInputIndexOffset(const int _face, const int _corner) const; inline int getInputFaceOffset(const int _face) const { return int(faceStart_.empty() ? maxFaceSize_ * _face : faceStart_[_face]); } /// build() preparation void prepareData(); // find isolated vertices void findIsolatedVertices(); // make sure each face has one vertex id without any references by neighboring faces // split vertices when necessary void forceUnsharedFaceVertex(); // eliminate duplicate attribute entries void weldVertices(); // fix incomplete welding map if mesh contains isolated vertices void fixWeldMap(); // convert n-poly -> tris (triangle fans) void triangulate(); // resolve triangulation void resolveTriangulation(); // sort input faces by group ids void sortFacesByGroup(); // v-cache optimization + vertex reorder void optimize(); // create vertex mapping: input id <-> final buffer id void createVertexMap(bool _keepIsolatedVerts); // create face mapping: input id <-> final tri id void createFaceMap(); public: /** \brief Multi-threaded version of getIndexAdjBuffer * * Uses a multi-threaded method based on the vertex-triangle adjacency list to compute the index buffer with adjacency. * * @param _dst [out] Pointer to memory address where the 32bit index buffer should be copied to. Must have size of at least 6 * numTris * 4 bytes * @param _borderIndex index to use for border edges (missing adjacent triangles) */ void getIndexAdjBuffer_MT(void* _dst, const int _borderIndex = -1); // debugging tools /// dump mesh info to text file void dbgdump(const char* _filename) const; /// dump mesh in wavefront obj format void dbgdumpObj(const char* _filename) const; /// dump input mesh to binary file format void dbgdumpInputBin(const char* _filename, bool _seperateFiles = false) const; /// dump input mesh to wavefront obj format void dbgdumpInputObj(const char* _filename) const; /// dump adjacency list to text file void dbgdumpAdjList(const char* _filename) const; /// test correctness of input <-> output id mappings, unshared per face vertex.. logs errors in file bool dbgVerify(const char* _filename) const; /// interpret vertex data according declaration and write to string std::string vertexToString(const void* v) const; /// return memory consumption in bytes /// @param _printConsole print detailed memory costs to command console size_t getMemoryUsage(bool _printConsole = true) const; /// check for errors in input data std::string checkInputData() const; }; struct RingTriangle { RingTriangle() {} RingTriangle(int i, RingTriangle* p, RingTriangle* n) : id(i), prev(p), next(n) {} int id; // local index of the triangle within a polygon [0, ... faceSize-3] RingTriangle* prev; // prev triangle in the ring RingTriangle* next; // next triangle in the ring }; }