/* ========================================================================= * * * * OpenMesh * * Copyright (c) 2001-2019, RWTH-Aachen University * * Department of Computer Graphics and Multimedia * * All rights reserved. * * www.openmesh.org * * * *---------------------------------------------------------------------------* * This file is part of OpenMesh. * *---------------------------------------------------------------------------* * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted provided that the following conditions * * are met: * * * * 1. Redistributions of source code must retain the above copyright notice, * * this list of conditions and the following disclaimer. * * * * 2. Redistributions in binary form must reproduce the above copyright * * notice, this list of conditions and the following disclaimer in the * * documentation and/or other materials provided with the distribution. * * * * 3. Neither the name of the copyright holder nor the names of its * * contributors may be used to endorse or promote products derived from * * this software without specific prior written permission. * * * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER * * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * * * ========================================================================= */ #pragma once #include #include #include #include //== NAMESPACES =============================================================== namespace OpenMesh { //== FORWARD DECLARATION ====================================================== //== CLASS DEFINITION ========================================================= namespace { struct Identity { template T operator()(const T& _t) const { return _t; } }; } template struct FilteredSmartRangeT; /// Base class for all smart range types template struct SmartRangeT { using Handle = HandleT; using SmartRange = SmartRangeT; using Range = RangeT; // TODO: Someone with better c++ knowledge may improve the code below. /** @brief Computes the sum of elements. * * Computes the sum of all elements in the range after applying the functor \p f. * * @param f Functor that is applied to all elements before computing the sum */ template auto sum(Functor&& f) -> typename std::decay()))>::type { auto range = static_cast(this); auto begin = range->begin(); auto end = range->end(); assert(begin != end); typename std::decay::type result = f(*begin); auto it = begin; ++it; for (; it != end; ++it) result += f(*it); return result; } /** @brief Computes the average of elements. * * Computes the average of all elements in the range after applying the functor \p f. * * @param f Functor that is applied to all elements before computing the average. */ template auto avg(Functor&& f) -> typename std::decay()))>::type { auto range = static_cast(this); auto begin = range->begin(); auto end = range->end(); assert(begin != end); typename std::decay::type result = f(*begin); auto it = begin; ++it; int n_elements = 1; for (; it != end; ++it) { result += f(*it); ++n_elements; } return (1.0 / n_elements) * result; } /** @brief Check if any element fulfils condition. * * Checks if functor \p f returns true for any of the elements in the range. * Returns true if that is the case, false otherwise. * * @param f Functor that is evaluated for all elements. */ template auto any_of(Functor&& f) -> bool { auto range = static_cast(this); for (auto e : *range) if (f(e)) return true; return false; } /** @brief Check if all elements fulfil condition. * * Checks if functor \p f returns true for all of the elements in the range. * Returns true if that is the case, false otherwise. * * @param f Functor that is evaluated for all elements. */ template auto all_of(Functor&& f) -> bool { auto range = static_cast(this); for (auto e : *range) if (!f(e)) return false; return true; } /** @brief Convert range to array. * * Converts the range of elements into an array of objects returned by functor \p f. * The size of the array needs to be provided by the user. If the size is larger than the number of * elements in the range, the remaining entries of the array will be uninitialized. * * @param f Functor that is applied to all elements before putting them into the array. If no functor is provided * the array will contain the handles. */ template auto to_array(Functor&& f = {}) -> std::array()))>::type, n> { auto range = static_cast(this); std::array()))>::type, n> res; auto it = range->begin(); auto end = range->end(); int i = 0; while (i < n && it != end) res[i++] = f(*(it++)); return res; } /** @brief Convert range to vector. * * Converts the range of elements into a vector of objects returned by functor \p f. * * @param f Functor that is applied to all elements before putting them into the vector. If no functor is provided * the vector will contain the handles. */ template auto to_vector(Functor&& f = {}) -> std::vector()))>::type> { auto range = static_cast(this); std::vector()))>::type> res; for (const auto& e : *range) res.push_back(f(e)); return res; } /** @brief Convert range to set. * * Converts the range of elements into a set of objects returned by functor \p f. * * @param f Functor that is applied to all elements before putting them into the set. If no functor is provided * the set will contain the handles. */ template auto to_set(Functor&& f = {}) -> std::set()))>::type> { auto range = static_cast(this); std::set()))>::type> res; for (const auto& e : *range) res.insert(f(e)); return res; } /** @brief Get the first element that fulfills a condition. * * Finds the first element of the range for which the functor \p f evaluates to true. * Returns an invalid handle if none evaluates to true * * @param f Functor that is applied to all elements before putting them into the set. If no functor is provided * the set will contain the handles. */ template auto first(Functor&& f = {}) -> HandleT { auto range = static_cast(this); for (const auto& e : *range) if (f(e)) return e; return HandleT(); } /** @brief Compute minimum. * * Computes the minimum of all objects returned by functor \p f. * * @param f Functor that is applied to all elements before computing minimum. */ template auto min(Functor&& f) -> typename std::decay()))>::type { using std::min; auto range = static_cast(this); auto it = range->begin(); auto end = range->end(); assert(it != end); typename std::decay()))>::type res = f(*it); ++it; for (; it != end; ++it) res = min(res, f(*it)); return res; } /** @brief Compute minimal element. * * Computes the element that minimizes \p f. * * @param f Functor that is applied to all elements before comparing. */ template auto argmin(Functor&& f) -> HandleT { auto range = static_cast(this); auto it = range->begin(); auto min_it = it; auto end = range->end(); assert(it != end); typename std::decay()))>::type curr_min = f(*it); ++it; for (; it != end; ++it) { auto val = f(*it); if (val < curr_min) { curr_min = val; min_it = it; } } return *min_it; } /** @brief Compute maximum. * * Computes the maximum of all objects returned by functor \p f. * * @param f Functor that is applied to all elements before computing maximum. */ template auto max(Functor&& f) -> typename std::decay()))>::type { using std::max; auto range = static_cast(this); auto it = range->begin(); auto end = range->end(); assert(it != end); typename std::decay()))>::type res = f(*it); ++it; for (; it != end; ++it) res = max(res, f(*it)); return res; } /** @brief Compute maximal element. * * Computes the element that maximizes \p f. * * @param f Functor that is applied to all elements before comparing. */ template auto argmax(Functor&& f) -> HandleT { auto range = static_cast(this); auto it = range->begin(); auto max_it = it; auto end = range->end(); assert(it != end); typename std::decay()))>::type curr_max = f(*it); ++it; for (; it != end; ++it) { auto val = f(*it); if (val > curr_max) { curr_max = val; max_it = it; } } return *max_it; } /** @brief Computes minimum and maximum. * * Computes the minimum and maximum of all objects returned by functor \p f. Result is returned as std::pair * containing minimum as first and maximum as second element. * * @param f Functor that is applied to all elements before computing maximum. */ template auto minmax(Functor&& f) -> std::pair()))>::type, typename std::decay()))>::type> { return std::make_pair(this->min(f), this->max(f)); } /** @brief Compute number of elements that satisfy a given predicate. * * Computes the numer of elements which satisfy functor \p f. * * @param f Predicate that elements have to satisfy in order to be counted. */ template auto count_if(Functor&& f) -> int { int count = 0; auto range = static_cast(this); for (const auto& e : *range) if (f(e)) ++count; return count; } /** @brief Apply a functor to each element. * * Calls functor \p f with each element as parameter * * @param f Functor that is called for each element. */ template auto for_each(Functor&& f) -> void { auto range = static_cast(this); for (const auto& e : *range) f(e); } /** @brief Only iterate over a subset of elements * * Returns a smart range which skips all elements that do not satisfy functor \p f * * @param f Functor that needs to be evaluated to true if the element should not be skipped. */ template auto filtered(Functor&& f) -> FilteredSmartRangeT::type> { auto range = static_cast(this); auto b = (*range).begin(); auto e = (*range).end(); return FilteredSmartRangeT::type>(f, b, e); } }; /// Class which applies a filter when iterating over elements template struct FilteredSmartRangeT : public SmartRangeT, HandleT> { using BaseRange = SmartRangeT, HandleT>; using BaseIterator = decltype((std::declval().begin())); struct FilteredIterator : public BaseIterator { FilteredIterator(Functor f, BaseIterator it, BaseIterator end): BaseIterator(it), f_(f), end_(end) { if (!f_(*(*this))) // if start is not valid go to first valid one operator++(); } FilteredIterator& operator++() { if (BaseIterator::operator==(end_)) // don't go past end return *this; // go to next valid one do BaseIterator::operator++(); while (BaseIterator::operator!=(end_) && !f_(*(*this))); return *this; } Functor f_; BaseIterator end_; }; FilteredSmartRangeT(Functor f, BaseIterator begin, BaseIterator end) : f_(f), begin_(begin), end_(end){} FilteredIterator begin() const { return FilteredIterator(f_, begin_, end_); } FilteredIterator end() const { return FilteredIterator(f_, end_, end_); } Functor f_; BaseIterator begin_; BaseIterator end_; }; //============================================================================= } // namespace OpenMesh //============================================================================= //=============================================================================