TopologyKernel.cc 84.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*===========================================================================*\
 *                                                                           *
 *                            OpenVolumeMesh                                 *
 *        Copyright (C) 2011 by Computer Graphics Group, RWTH Aachen         *
 *                        www.openvolumemesh.org                             *
 *                                                                           *
 *---------------------------------------------------------------------------*
 *  This file is part of OpenVolumeMesh.                                     *
 *                                                                           *
 *  OpenVolumeMesh is free software: you can redistribute it and/or modify   *
 *  it under the terms of the GNU Lesser General Public License as           *
 *  published by the Free Software Foundation, either version 3 of           *
 *  the License, or (at your option) any later version with the              *
 *  following exceptions:                                                    *
 *                                                                           *
 *  If other files instantiate templates or use macros                       *
 *  or inline functions from this file, or you compile this file and         *
 *  link it with other files to produce an executable, this file does        *
 *  not by itself cause the resulting executable to be covered by the        *
 *  GNU Lesser General Public License. This exception does not however       *
 *  invalidate any other reasons why the executable file might be            *
 *  covered by the GNU Lesser General Public License.                        *
 *                                                                           *
 *  OpenVolumeMesh is distributed in the hope that it will be useful,        *
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of           *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            *
 *  GNU Lesser General Public License for more details.                      *
 *                                                                           *
 *  You should have received a copy of the GNU LesserGeneral Public          *
 *  License along with OpenVolumeMesh.  If not,                              *
 *  see <http://www.gnu.org/licenses/>.                                      *
 *                                                                           *
\*===========================================================================*/

/*===========================================================================*\
 *                                                                           *
 *   $Revision$                                                         *
 *   $Date$                    *
 *   $LastChangedBy$                                                *
 *                                                                           *
\*===========================================================================*/

43 44 45 46
#ifndef NDEBUG
#include <iostream>
#endif

47 48
#include <queue>

49 50 51 52 53 54 55 56 57 58 59 60 61 62
#include "TopologyKernel.hh"

namespace OpenVolumeMesh {

// Initialize constants
const VertexHandle      TopologyKernel::InvalidVertexHandle   = VertexHandle(-1);
const EdgeHandle        TopologyKernel::InvalidEdgeHandle     = EdgeHandle(-1);
const HalfEdgeHandle    TopologyKernel::InvalidHalfEdgeHandle = HalfEdgeHandle(-1);
const FaceHandle        TopologyKernel::InvalidFaceHandle     = FaceHandle(-1);
const HalfFaceHandle    TopologyKernel::InvalidHalfFaceHandle = HalfFaceHandle(-1);
const CellHandle        TopologyKernel::InvalidCellHandle     = CellHandle(-1);

//========================================================================================

63 64 65
VertexHandle TopologyKernel::add_vertex() {

    ++n_vertices_;
66
    vertex_deleted_.push_back(false);
67

68
    // Create item for vertex bottom-up incidences
69 70 71 72 73 74 75 76 77 78 79 80 81
    if(v_bottom_up_) {
        outgoing_hes_per_vertex_.resize(n_vertices_);
    }

    // Resize vertex props
    resize_vprops(n_vertices_);

    // Return 0-indexed handle
    return VertexHandle((int)(n_vertices_ - 1));
}

//========================================================================================

82 83
/// Add edge
EdgeHandle TopologyKernel::add_edge(const VertexHandle& _fromVertex,
84 85
                                    const VertexHandle& _toVertex,
                                    bool _allowDuplicates) {
86

87 88
    // If the conditions are not fulfilled, assert will fail (instead
	// of returning an invalid handle)
89 90
    assert(_fromVertex.is_valid() && (size_t)_fromVertex.idx() < n_vertices() && !is_deleted(_fromVertex));
    assert(_toVertex.is_valid() && (size_t)_toVertex.idx() < n_vertices() && !is_deleted(_toVertex));
91 92

    // Test if edge does not exist, yet
93
    if(!_allowDuplicates) {
Mike Kremer's avatar
Mike Kremer committed
94 95
        if(v_bottom_up_) {

96
            assert((size_t)_fromVertex.idx() < outgoing_hes_per_vertex_.size());
Mike Kremer's avatar
Mike Kremer committed
97 98 99 100 101 102 103 104
            std::vector<HalfEdgeHandle>& ohes = outgoing_hes_per_vertex_[_fromVertex.idx()];
            for(std::vector<HalfEdgeHandle>::const_iterator he_it = ohes.begin(),
                    he_end = ohes.end(); he_it != he_end; ++he_it) {
                if(halfedge(*he_it).to_vertex() == _toVertex) {
                    return edge_handle(*he_it);
                }
            }
        } else {
Max Lyon's avatar
Max Lyon committed
105
            for(int i = 0; i < (int)edges_.size(); ++i) {
Mike Kremer's avatar
Mike Kremer committed
106 107 108 109 110
                if(edge(EdgeHandle(i)).from_vertex() == _fromVertex && edge(EdgeHandle(i)).to_vertex() == _toVertex) {
                    return EdgeHandle(i);
                } else if(edge(EdgeHandle(i)).from_vertex() == _toVertex && edge(EdgeHandle(i)).to_vertex() == _fromVertex) {
                    return EdgeHandle(i);
                }
111
            }
112 113 114 115 116 117 118 119
        }
    }

    // Create edge object
    OpenVolumeMeshEdge e(_fromVertex, _toVertex);

    // Store edge locally
    edges_.push_back(e);
120
    edge_deleted_.push_back(false);
121 122 123 124

    // Resize props
    resize_eprops(n_edges());

125
    EdgeHandle eh((int)edges_.size()-1);
126

127
    // Update vertex bottom-up incidences
128
    if(v_bottom_up_) {
129 130 131
        assert((size_t)_fromVertex.idx() < outgoing_hes_per_vertex_.size());
        assert((size_t)_toVertex.idx() < outgoing_hes_per_vertex_.size());

132 133
        outgoing_hes_per_vertex_[_fromVertex.idx()].push_back(halfedge_handle(eh, 0));
        outgoing_hes_per_vertex_[_toVertex.idx()].push_back(halfedge_handle(eh, 1));
134 135
    }

136
    // Create item for edge bottom-up incidences
137 138 139 140
    if(e_bottom_up_) {
        incident_hfs_per_he_.resize(n_halfedges());
    }

141
    // Get handle of recently created edge
142
    return eh;
143 144 145 146 147 148 149
}

//========================================================================================

/// Add face via incident edges
FaceHandle TopologyKernel::add_face(const std::vector<HalfEdgeHandle>& _halfedges, bool _topologyCheck) {

150
#ifndef NDEBUG
151
    // Assert that halfedges are valid
152
    for(std::vector<HalfEdgeHandle>::const_iterator it = _halfedges.begin(),
153
            end = _halfedges.end(); it != end; ++it)
154
        assert(it->is_valid() && (size_t)it->idx() < edges_.size() * 2u && !is_deleted(*it));
155
#endif
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

    // Perform topology check
    if(_topologyCheck) {

        /*
         * Test if halfedges are connected
         *
         * The test works as follows:
         * For every edge in the parameter vector
         * put all incident vertices into a
         * set of either "from"-vertices or "to"-vertices,
         * respectively.
         * If and only if all edges are connected,
         * then both sets are identical.
         */

        std::set<VertexHandle> fromVertices;
        std::set<VertexHandle> toVertices;

175 176
        for(std::vector<HalfEdgeHandle>::const_iterator it = _halfedges.begin(),
            end = _halfedges.end(); it != end; ++it) {
177 178 179 180 181

            fromVertices.insert(halfedge(*it).from_vertex());
            toVertices.insert(halfedge(*it).to_vertex());
        }

182 183
        for(std::set<VertexHandle>::const_iterator v_it = fromVertices.begin(),
                v_end = fromVertices.end(); v_it != v_end; ++v_it) {
184
            if(toVertices.count(*v_it) != 1) {
185 186 187 188 189 190
                // The situation here is different, the caller has requested a
                // topology check and expects an invalid handle if the half-edges
                // are not connected. Give him a message in debug mode.
#ifndef NDEBUG
                std::cerr << "add_face(): The specified halfedges are not connected!" << std::endl;
#endif
191 192 193 194 195 196 197 198 199 200 201
                return InvalidFaceHandle;
            }
        }

        // The halfedges are now guaranteed to be connected
    }

    // Create face
    OpenVolumeMeshFace face(_halfedges);

    faces_.push_back(face);
202
    face_deleted_.push_back(false);
203 204

    // Get added face's handle
Max Lyon's avatar
Max Lyon committed
205
    FaceHandle fh((int)faces_.size() - 1);
206 207 208 209

    // Resize props
    resize_fprops(n_faces());

210
    // Update edge bottom-up incidences
211 212 213 214
    if(e_bottom_up_) {

        for(std::vector<HalfEdgeHandle>::const_iterator it = _halfedges.begin(),
            end = _halfedges.end(); it != end; ++it) {
215 216 217 218

            assert((size_t)it->idx() < incident_hfs_per_he_.size());
            assert((size_t)opposite_halfedge_handle(*it).idx() < incident_hfs_per_he_.size());

219 220
            incident_hfs_per_he_[it->idx()].push_back(halfface_handle(fh, 0));
            incident_hfs_per_he_[opposite_halfedge_handle(*it).idx()].push_back(halfface_handle(fh, 1));
221 222 223
        }
    }

224
    // Create item for face bottom-up incidences
225 226 227 228
    if(f_bottom_up_) {
        incident_cell_per_hf_.resize(n_halffaces(), InvalidCellHandle);
    }

229 230 231 232 233 234 235 236 237 238
    // Return handle of recently created face
    return fh;
}

//========================================================================================

/// Add face via incident vertices
/// Define the _vertices in counter-clockwise order (from the "outside")
FaceHandle TopologyKernel::add_face(const std::vector<VertexHandle>& _vertices) {

239
#ifndef NDEBUG
240
    // Assert that all vertices have valid indices
241
    for(std::vector<VertexHandle>::const_iterator it = _vertices.begin(),
242
            end = _vertices.end(); it != end; ++it)
243
        assert(it->is_valid() && (size_t)it->idx() < n_vertices() && !is_deleted(*it));
244
#endif
245 246 247 248

    // Add edge for each pair of vertices
    std::vector<HalfEdgeHandle> halfedges;
    std::vector<VertexHandle>::const_iterator it = _vertices.begin();
249 250
    std::vector<VertexHandle>::const_iterator end = _vertices.end();
    for(; (it+1) != end; ++it) {
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        EdgeHandle e_idx = add_edge(*it, *(it+1));

        // Swap halfedge if edge already existed and
        // has been initially defined in reverse orientation
        int swap = 0;
        if(edge(e_idx).to_vertex() == *it) swap = 1;

        halfedges.push_back(halfedge_handle(e_idx, swap));
    }
    EdgeHandle e_idx = add_edge(*it, *_vertices.begin());
    int swap = 0;
    if(edge(e_idx).to_vertex() == *it) swap = 1;
    halfedges.push_back(halfedge_handle(e_idx, swap));

    // Add face
#ifndef NDEBUG
    return add_face(halfedges, true);
#else
    return add_face(halfedges, false);
#endif
}

//========================================================================================

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
void TopologyKernel::reorder_incident_halffaces(const EdgeHandle& _eh) {

    /* Put halffaces in clockwise order via the
     * same cell property which now exists.
     * Note, this only works for manifold configurations though.
     * Proceed as follows: Pick one starting halfface. Assuming
     * that all halfface normals point into the incident cell,
     * we find the adjacent halfface within the incident cell
     * along the considered halfedge. We set the found halfface
     * to be the one to be processed next. If we reach an outside
     * region, we try to go back from the starting halfface in reverse
     * order. If the complex is properly connected (the pairwise
     * intersection of two adjacent 3-dimensional cells is always
     * a 2-dimensional entity, namely a facet), such an ordering
     * always exists and will be found. If not, a correct order
     * can not be given and, as a result, the related iterators
     * will address the related entities in an arbitrary fashion.
     */

    for(unsigned char s = 0; s <= 1; s++) {

        HalfEdgeHandle cur_he = halfedge_handle(_eh, s);
        std::vector<HalfFaceHandle> new_halffaces;
        HalfFaceHandle start_hf = InvalidHalfFaceHandle;
        HalfFaceHandle cur_hf = InvalidHalfFaceHandle;

301 302
        // Start with one incident halfface and go into the first direction
        assert((size_t)cur_he.idx() < incident_hfs_per_he_.size());
303

304
        if(incident_hfs_per_he_[cur_he.idx()].size() != 0) {
305 306

            // Get start halfface
307
            cur_hf = *incident_hfs_per_he_[cur_he.idx()].begin();
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
            start_hf = cur_hf;

            while(cur_hf != InvalidHalfFaceHandle) {

                // Add halfface
                new_halffaces.push_back(cur_hf);

                // Go to next halfface
                cur_hf = adjacent_halfface_in_cell(cur_hf, cur_he);

                if(cur_hf != InvalidHalfFaceHandle)
                    cur_hf = opposite_halfface_handle(cur_hf);

                // End when we're through
                if(cur_hf == start_hf) break;
323 324 325
                // if one of the faces of the cell was already incident to another cell we need this check
                // to prevent running into an infinite loop.
                if(std::find(new_halffaces.begin(), new_halffaces.end(), cur_hf) != new_halffaces.end()) break;
326 327 328 329 330 331
            }

            // First direction has terminated
            // If new_halffaces has the same size as old (unordered)
            // vector of incident halffaces, we are done here
            // If not, try the other way round
332
            if(new_halffaces.size() != incident_hfs_per_he_[cur_he.idx()].size()) {
333 334 335 336 337 338 339 340 341 342 343

                // Get opposite of start halfface
                cur_hf = start_hf;

                 while(cur_hf != InvalidHalfFaceHandle) {

                     cur_hf = opposite_halfface_handle(cur_hf);
                     cur_hf = adjacent_halfface_in_cell(cur_hf, cur_he);

                     if(cur_hf == start_hf) break;

344 345 346
                     // if one of the faces of the cell was already incident to another cell we need this check
                     // to prevent running into an infinite loop.
                     if(std::find(new_halffaces.begin(), new_halffaces.end(), cur_hf) != new_halffaces.end()) break;
Max Lyon's avatar
Max Lyon committed
347 348 349 350

                     if(cur_hf != InvalidHalfFaceHandle)
                         new_halffaces.insert(new_halffaces.begin(), cur_hf);
                     else break;
351 352 353 354
                }
            }

            // Everything worked just fine, set the new ordered vector
355 356
            if(new_halffaces.size() == incident_hfs_per_he_[cur_he.idx()].size()) {
                incident_hfs_per_he_[cur_he.idx()] = new_halffaces;
357 358 359 360 361 362 363
            }
        }
    }
}

//========================================================================================

364 365 366
/// Add cell via incident halffaces
CellHandle TopologyKernel::add_cell(const std::vector<HalfFaceHandle>& _halffaces, bool _topologyCheck) {

367
#ifndef NDEBUG
368
    // Assert that halffaces have valid indices
369
    for(std::vector<HalfFaceHandle>::const_iterator it = _halffaces.begin(),
370
            end = _halffaces.end(); it != end; ++it)
371
        assert(it->is_valid() && ((size_t)it->idx() < faces_.size() * 2u) && !is_deleted(*it));
372
#endif
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

    // Perform topology check
    if(_topologyCheck) {

        /*
         * Test if all halffaces are connected and form a two-manifold
         * => Cell is closed
         *
         * This test is simple: The number of involved half-edges has to be
         * exactly twice the number of involved edges.
         */

        std::set<HalfEdgeHandle> incidentHalfedges;
        std::set<EdgeHandle>     incidentEdges;

388 389
        for(std::vector<HalfFaceHandle>::const_iterator it = _halffaces.begin(),
                end = _halffaces.end(); it != end; ++it) {
390 391

            OpenVolumeMeshFace hface = halfface(*it);
392 393
            for(std::vector<HalfEdgeHandle>::const_iterator he_it = hface.halfedges().begin(),
                    he_end = hface.halfedges().end(); he_it != he_end; ++he_it) {
394 395 396 397 398 399
                incidentHalfedges.insert(*he_it);
                incidentEdges.insert(edge_handle(*he_it));
            }
        }

        if(incidentHalfedges.size() != (incidentEdges.size() * 2u)) {
400 401 402
#ifndef NDEBUG
            std::cerr << "add_cell(): The specified half-faces are not connected!" << std::endl;
#endif
403 404 405 406 407 408 409 410 411 412
            return InvalidCellHandle;
        }

        // The halffaces are now guaranteed to form a two-manifold
    }

    // Create new cell
    OpenVolumeMeshCell cell(_halffaces);

    cells_.push_back(cell);
413
    cell_deleted_.push_back(false);
414 415 416 417

    // Resize props
    resize_cprops(n_cells());

418
    CellHandle ch((int)cells_.size()-1);
419

420
    // Update face bottom-up incidences
421 422 423 424 425
    if(f_bottom_up_) {

        std::set<EdgeHandle> cell_edges;
        for(std::vector<HalfFaceHandle>::const_iterator it = _halffaces.begin(),
                end = _halffaces.end(); it != end; ++it) {
426
            assert((size_t)it->idx() < incident_cell_per_hf_.size());
427

428
#ifndef NDEBUG
429 430
            if(_topologyCheck) {
                if(incident_cell_per_hf_[it->idx()] != InvalidCellHandle) {
431 432 433 434 435 436
                    // Shouldn't this situation be dealt with before adding the
                    // cell and return InvalidCellHandle in this case?
                	// Mike: Not if the user intends to add non-manifold
                	// configurations. Although, in this case, he should be
                	// warned about it.
                    std::cerr << "add_cell(): One of the specified half-faces is already incident to another cell!" << std::endl;
437 438
                }
            }
439
#endif
440 441

            // Overwrite incident cell for current half-face
442
            incident_cell_per_hf_[it->idx()] = ch;
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

            // Collect all edges of cell
            const std::vector<HalfEdgeHandle> hes = halfface(*it).halfedges();
            for(std::vector<HalfEdgeHandle>::const_iterator he_it = hes.begin(),
                    he_end = hes.end(); he_it != he_end; ++he_it) {
                cell_edges.insert(edge_handle(*he_it));
            }
        }

        if(e_bottom_up_) {

            // Try to reorder all half-faces w.r.t.
            // their incident half-edges such that all
            // half-faces are in cyclic order around
            // a half-edge
            for(std::set<EdgeHandle>::const_iterator e_it = cell_edges.begin(),
                    e_end = cell_edges.end(); e_it != e_end; ++e_it) {
                reorder_incident_halffaces(*e_it);
            }
        }
    }

    return ch;
}

//========================================================================================

470
/// Set the vertices of an edge
471
// cppcheck-suppress unusedFunction ; public interface
472 473
void TopologyKernel::set_edge(const EdgeHandle& _eh, const VertexHandle& _fromVertex, const VertexHandle& _toVertex) {

474 475 476
    assert(_fromVertex.is_valid() && (size_t)_fromVertex.idx() < n_vertices() && !is_deleted(_fromVertex));
    assert(_toVertex.is_valid() && (size_t)_toVertex.idx() < n_vertices() && !is_deleted(_toVertex));

477 478 479 480 481 482 483 484 485 486 487
    Edge& e = edge(_eh);

    // Update bottom-up entries
    if(has_vertex_bottom_up_incidences()) {

        const VertexHandle& fv = e.from_vertex();
        const VertexHandle& tv = e.to_vertex();

        const HalfEdgeHandle heh0 = halfedge_handle(_eh, 0);
        const HalfEdgeHandle heh1 = halfedge_handle(_eh, 1);

Mike Kremer's avatar
Mike Kremer committed
488 489
        std::vector<HalfEdgeHandle>::iterator h_end =
        		std::remove(outgoing_hes_per_vertex_[fv.idx()].begin(), outgoing_hes_per_vertex_[fv.idx()].end(), heh0);
490 491 492 493
        outgoing_hes_per_vertex_[fv.idx()].resize(h_end - outgoing_hes_per_vertex_[fv.idx()].begin());

        h_end = std::remove(outgoing_hes_per_vertex_[tv.idx()].begin(), outgoing_hes_per_vertex_[tv.idx()].end(), heh1);
        outgoing_hes_per_vertex_[tv.idx()].resize(h_end - outgoing_hes_per_vertex_[tv.idx()].begin());
494 495 496 497 498 499 500 501 502 503 504 505

        outgoing_hes_per_vertex_[_fromVertex.idx()].push_back(heh0);
        outgoing_hes_per_vertex_[_toVertex.idx()].push_back(heh1);
    }

    e.set_from_vertex(_fromVertex);
    e.set_to_vertex(_toVertex);
}

//========================================================================================

/// Set the half-edges of a face
506
// cppcheck-suppress unusedFunction ; public interface
507 508 509 510 511 512 513 514 515 516 517 518 519 520
void TopologyKernel::set_face(const FaceHandle& _fh, const std::vector<HalfEdgeHandle>& _hes) {

    Face& f = face(_fh);

    if(has_edge_bottom_up_incidences()) {

        const HalfFaceHandle hf0 = halfface_handle(_fh, 0);
        const HalfFaceHandle hf1 = halfface_handle(_fh, 1);

        const std::vector<HalfEdgeHandle>& hes = f.halfedges();

        for(std::vector<HalfEdgeHandle>::const_iterator he_it = hes.begin(),
                he_end = hes.end(); he_it != he_end; ++he_it) {

Mike Kremer's avatar
Mike Kremer committed
521 522
        	std::vector<HalfFaceHandle>::iterator h_end =
        			std::remove(incident_hfs_per_he_[he_it->idx()].begin(),
523 524 525 526 527 528
                        		incident_hfs_per_he_[he_it->idx()].end(), hf0);
            incident_hfs_per_he_[he_it->idx()].resize(h_end - incident_hfs_per_he_[he_it->idx()].begin());

            h_end =  std::remove(incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].begin(),
                        		 incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].end(), hf1);
            incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].resize(h_end - incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].begin());
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
        }

        for(std::vector<HalfEdgeHandle>::const_iterator he_it = _hes.begin(),
                he_end = _hes.end(); he_it != he_end; ++he_it) {

            incident_hfs_per_he_[he_it->idx()].push_back(hf0);
            incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].push_back(hf1);
        }

        // TODO: Reorder incident half-faces
    }

    f.set_halfedges(_hes);
}

//========================================================================================

/// Set the half-faces of a cell
547
// cppcheck-suppress unusedFunction ; public interface
548 549 550 551 552 553 554 555 556 557
void TopologyKernel::set_cell(const CellHandle& _ch, const std::vector<HalfFaceHandle>& _hfs) {

    Cell& c = cell(_ch);

    if(has_face_bottom_up_incidences()) {

        const std::vector<HalfFaceHandle>& hfs = c.halffaces();
        for(std::vector<HalfFaceHandle>::const_iterator hf_it = hfs.begin(),
                hf_end = hfs.end(); hf_it != hf_end; ++hf_it) {

558
            incident_cell_per_hf_[hf_it->idx()] = InvalidCellHandle;
559 560 561 562 563
        }

        for(std::vector<HalfFaceHandle>::const_iterator hf_it = _hfs.begin(),
                hf_end = _hfs.end(); hf_it != hf_end; ++hf_it) {

564
            incident_cell_per_hf_[hf_it->idx()] = _ch;
565 566 567 568 569 570 571 572
        }
    }

    c.set_halffaces(_hfs);
}

//========================================================================================

573 574 575
/**
 * \brief Delete vertex from mesh
 *
Mike Kremer's avatar
Mike Kremer committed
576
 * Get all incident higher-dimensional entities and delete the complete
577 578 579 580 581 582 583 584 585 586
 * subtree of the mesh incident to vertex _h.
 * In this function all incident entities are gathered
 * and deleted using the delete_*_core functions
 * that do the actual deletion including the update
 * of the bottom-up incidences, etc.
 *
 * @param _h The handle to the vertex to be deleted
 */
VertexIter TopologyKernel::delete_vertex(const VertexHandle& _h) {

587 588
    assert(!is_deleted(_h));

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
    std::vector<VertexHandle> vs;
    vs.push_back(_h);

    std::set<EdgeHandle> incidentEdges_s;
    get_incident_edges(vs, incidentEdges_s);

    std::set<FaceHandle> incidentFaces_s;
    get_incident_faces(incidentEdges_s, incidentFaces_s);

    std::set<CellHandle> incidentCells_s;
    get_incident_cells(incidentFaces_s, incidentCells_s);

    // Delete cells
    for(std::set<CellHandle>::const_reverse_iterator c_it = incidentCells_s.rbegin(),
            c_end = incidentCells_s.rend(); c_it != c_end; ++c_it) {
        delete_cell_core(*c_it);
    }

    // Delete faces
    for(std::set<FaceHandle>::const_reverse_iterator f_it = incidentFaces_s.rbegin(),
            f_end = incidentFaces_s.rend(); f_it != f_end; ++f_it) {
        delete_face_core(*f_it);
    }

    // Delete edges
    for(std::set<EdgeHandle>::const_reverse_iterator e_it = incidentEdges_s.rbegin(),
            e_end = incidentEdges_s.rend(); e_it != e_end; ++e_it) {
        delete_edge_core(*e_it);
    }

    // Delete vertex
    return delete_vertex_core(_h);
}

//========================================================================================

/**
 * \brief Delete edge from mesh
 *
Mike Kremer's avatar
Mike Kremer committed
628
 * Get all incident higher-dimensional entities and delete the complete
629 630 631 632 633 634 635 636 637 638
 * subtree of the mesh incident to edge _h.
 * In this function all incident entities are gathered
 * and deleted using the delete_*_core functions
 * that do the actual deletion including the update
 * of the bottom-up incidences, etc.
 *
 * @param _h The handle to the edge to be deleted
 */
EdgeIter TopologyKernel::delete_edge(const EdgeHandle& _h) {

639 640
    assert(!is_deleted(_h));

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
    std::vector<EdgeHandle> es;
    es.push_back(_h);

    std::set<FaceHandle> incidentFaces_s;
    get_incident_faces(es, incidentFaces_s);

    std::set<CellHandle> incidentCells_s;
    get_incident_cells(incidentFaces_s, incidentCells_s);

    // Delete cells
    for(std::set<CellHandle>::const_reverse_iterator c_it = incidentCells_s.rbegin(),
            c_end = incidentCells_s.rend(); c_it != c_end; ++c_it) {
        delete_cell_core(*c_it);
    }

    // Delete faces
    for(std::set<FaceHandle>::const_reverse_iterator f_it = incidentFaces_s.rbegin(),
            f_end = incidentFaces_s.rend(); f_it != f_end; ++f_it) {
        delete_face_core(*f_it);
    }

    // Delete edge
    return delete_edge_core(_h);
}

//========================================================================================

/**
 * \brief Delete face from mesh
 *
Mike Kremer's avatar
Mike Kremer committed
671
 * Get all incident higher-dimensional entities and delete the complete
672 673 674 675 676 677 678 679 680 681
 * subtree of the mesh incident to face _h.
 * In this function all incident entities are gathered
 * and deleted using the delete_*_core functions
 * that do the actual deletion including the update
 * of the bottom-up incidences, etc.
 *
 * @param _h The handle to the face to be deleted
 */
FaceIter TopologyKernel::delete_face(const FaceHandle& _h) {

682 683
    assert(!is_deleted(_h));

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
    std::vector<FaceHandle> fs;
    fs.push_back(_h);

    std::set<CellHandle> incidentCells_s;
    get_incident_cells(fs, incidentCells_s);

    // Delete cells
    for(std::set<CellHandle>::const_reverse_iterator c_it = incidentCells_s.rbegin(),
            c_end = incidentCells_s.rend(); c_it != c_end; ++c_it) {
        delete_cell_core(*c_it);
    }

    // Delete face
    return delete_face_core(_h);
}

//========================================================================================

/**
 * \brief Delete cell from mesh
 *
 * Since there's no higher dimensional incident
 * entity to a cell, we can safely delete it from the
 * mesh.
 *
 * @param _h The handle to the cell to be deleted
 */
CellIter TopologyKernel::delete_cell(const CellHandle& _h) {

713
    assert(!is_deleted(_h));
714 715 716
    return delete_cell_core(_h);
}

717 718 719 720 721
/**
 * \brief Delete all entities that are marked as deleted
 */
void TopologyKernel::collect_garbage()
{
722
    if (!deferred_deletion_enabled() || !needs_garbage_collection())
723 724
        return; // nothing todo

725
    deferred_deletion = false;
726

727 728 729 730
    for (int i = (int)n_cells(); i > 0; --i) {
        if (is_deleted(CellHandle(i - 1))) {
            cell_deleted_[i - 1] = false;
            delete_cell_core(CellHandle(i - 1));
731
        }
732 733
    }
    n_deleted_cells_ = 0;
734

735 736 737 738
    for (int i = (int)n_faces(); i > 0; --i) {
        if (is_deleted(FaceHandle(i - 1))) {
            face_deleted_[i - 1] = false;
            delete_face_core(FaceHandle(i - 1));
739
        }
740 741
    }
    n_deleted_faces_ = 0;
742

743 744 745 746
    for (int i = (int)n_edges(); i > 0; --i) {
        if (is_deleted(EdgeHandle(i - 1))) {
            edge_deleted_[i - 1] = false;
            delete_edge_core(EdgeHandle(i - 1));
747
        }
748 749
    }
    n_deleted_edges_ = 0;
750

751 752 753 754
    for (int i = (int)n_vertices(); i > 0; --i) {
        if (is_deleted(VertexHandle(i - 1))) {
            vertex_deleted_[i - 1] = false;
            delete_vertex_core(VertexHandle(i - 1));
755
        }
756 757
    }
    n_deleted_vertices_ = 0;
758

759
    deferred_deletion = true;
760 761 762

}

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
//========================================================================================

template <class ContainerT>
void TopologyKernel::get_incident_edges(const ContainerT& _vs,
                                        std::set<EdgeHandle>& _es) const {

    _es.clear();

    if(v_bottom_up_) {

        for(typename ContainerT::const_iterator v_it = _vs.begin(),
                v_end = _vs.end(); v_it != v_end; ++v_it) {

            const std::vector<HalfEdgeHandle>& inc_hes = outgoing_hes_per_vertex_[v_it->idx()];

            for(std::vector<HalfEdgeHandle>::const_iterator he_it = inc_hes.begin(),
                    he_end = inc_hes.end(); he_it != he_end; ++he_it) {

                _es.insert(edge_handle(*he_it));
            }
        }
    } else {

        for(typename ContainerT::const_iterator v_it = _vs.begin(),
                v_end = _vs.end(); v_it != v_end; ++v_it) {

            for(EdgeIter e_it = edges_begin(), e_end = edges_end(); e_it != e_end; ++e_it) {

                const Edge& e = edge(*e_it);

                if(e.from_vertex() == *v_it || e.to_vertex() == *v_it) {
                    _es.insert(*e_it);
                }
            }
        }
    }
}

//========================================================================================

template <class ContainerT>
void TopologyKernel::get_incident_faces(const ContainerT& _es,
                                        std::set<FaceHandle>& _fs) const {

    _fs.clear();

    if(e_bottom_up_) {

        for(typename ContainerT::const_iterator e_it = _es.begin(),
                e_end = _es.end(); e_it != e_end; ++e_it) {

            for(HalfEdgeHalfFaceIter hehf_it = hehf_iter(halfedge_handle(*e_it, 0));
                    hehf_it.valid(); ++hehf_it) {

                const FaceHandle fh = face_handle(*hehf_it);

                if(_fs.count(fh) == 0) {
                    _fs.insert(fh);
                }
            }
        }
    } else {

        for(typename ContainerT::const_iterator e_it = _es.begin(),
                e_end = _es.end(); e_it != e_end; ++e_it) {

            for(FaceIter f_it = faces_begin(),
                    f_end = faces_end(); f_it != f_end; ++f_it) {

                const std::vector<HalfEdgeHandle>& hes = face(*f_it).halfedges();

                for(std::vector<HalfEdgeHandle>::const_iterator he_it = hes.begin(),
                        he_end = hes.end(); he_it != he_end; ++he_it) {

                    if(edge_handle(*he_it) == *e_it) {
                        _fs.insert(*f_it);
                        break;
                    }
                }
            }
        }
    }
}

//========================================================================================

template <class ContainerT>
void TopologyKernel::get_incident_cells(const ContainerT& _fs,
                                        std::set<CellHandle>& _cs) const {

    _cs.clear();

    if(f_bottom_up_) {

        for(typename ContainerT::const_iterator f_it = _fs.begin(),
            f_end = _fs.end(); f_it != f_end; ++f_it) {

            const HalfFaceHandle hfh0 = halfface_handle(*f_it, 0);
            const HalfFaceHandle hfh1 = halfface_handle(*f_it, 1);

            const CellHandle c0 = incident_cell(hfh0);
            const CellHandle c1 = incident_cell(hfh1);

            if(c0.is_valid()) _cs.insert(c0);
            if(c1.is_valid()) _cs.insert(c1);
        }
    } else {

        for(typename ContainerT::const_iterator f_it = _fs.begin(),
            f_end = _fs.end(); f_it != f_end; ++f_it) {

            for(CellIter c_it = cells_begin(), c_end = cells_end();
                c_it != c_end; ++c_it) {

                const std::vector<HalfFaceHandle>& hfs = cell(*c_it).halffaces();

                for(std::vector<HalfFaceHandle>::const_iterator hf_it = hfs.begin(),
                        hf_end = hfs.end(); hf_it != hf_end; ++hf_it) {

                    if(face_handle(*hf_it) == *f_it) {
                        _cs.insert(*c_it);
                        break;
                    }
                }
            }
        }
    }
}

//========================================================================================

894 895 896 897 898 899 900 901 902
/**
 * \brief Delete vertex from mesh
 *
 * After performing this operation, all vertices
 * following vertex _h in the array will be accessible
 * through their old handle decreased by one.
 * This function directly fixes the vertex links
 * in all edges. These steps are performed:
 *
903 904
 * 1) Decrease all vertex handles > _h in incident edges
 * 2) Delete entry in bottom-up list: V -> HE
905 906 907 908
 * 3) Delete vertex itself (not necessary here since
 *    a vertex is only represented by a number)
 * 4) Delete property entry
 *
909
 * @param _h A vertex's handle
910
 */
911
VertexIter TopologyKernel::delete_vertex_core(const VertexHandle& _h) {
912

913 914
    VertexHandle h = _h;
    assert(h.is_valid() && (size_t)h.idx() < n_vertices());
915

916 917
    if (fast_deletion_enabled() && !deferred_deletion_enabled()) // for fast deletion swap handle with last not deleted vertex
    {
Max Lyon's avatar
Max Lyon committed
918
        VertexHandle last_undeleted_vertex = VertexHandle((int)n_vertices()-1);
919
        assert(!vertex_deleted_[last_undeleted_vertex.idx()]);
920
        swap_vertex_indices(h, last_undeleted_vertex);
921 922
        h = last_undeleted_vertex;
    }
923

924 925
    if (deferred_deletion_enabled())
    {
926
        ++n_deleted_vertices_;
927 928 929 930 931 932 933 934 935 936 937 938 939
        vertex_deleted_[h.idx()] = true;
//        deleted_vertices_.push_back(h);

        // Iterator to next element in vertex list
//        return (vertices_begin() + h.idx()+1);
        return VertexIter(this, VertexHandle(h.idx()+1));
    }
    else
    {
        // 1)
        if(v_bottom_up_) {

            // Decrease all vertex handles >= _h in all edge definitions
Max Lyon's avatar
Max Lyon committed
940
            for(int i = h.idx(), end = (int)n_vertices(); i < end; ++i) {
941 942
                const std::vector<HalfEdgeHandle>& hes = outgoing_hes_per_vertex_[i];
                for(std::vector<HalfEdgeHandle>::const_iterator he_it = hes.begin(),
943
                    he_end = hes.end(); he_it != he_end; ++he_it) {
944

945 946 947 948 949 950 951
                    Edge& e = edge(edge_handle(*he_it));
                    if(e.from_vertex().idx() == i) {
                        e.set_from_vertex(VertexHandle(i-1));
                    }
                    if(e.to_vertex().idx() == i) {
                        e.set_to_vertex(VertexHandle(i-1));
                    }
952 953
                }
            }
954

955
        } else {
956

957 958
            // Iterate over all edges
            for(EdgeIter e_it = edges_begin(), e_end = edges_end();
959 960
                e_it != e_end; ++e_it) {

961 962 963 964 965 966 967
                // Decrease all vertex handles in edge definitions that are greater than _h
                if(edge(*e_it).from_vertex() > h) {
                    edge(*e_it).set_from_vertex(VertexHandle(edge(*e_it).from_vertex().idx() - 1));
                }
                if(edge(*e_it).to_vertex() > h) {
                    edge(*e_it).set_to_vertex(VertexHandle(edge(*e_it).to_vertex().idx() - 1));
                }
968 969 970
            }
        }

971 972 973 974 975 976 977 978 979 980 981 982
        // 2)

        if(v_bottom_up_) {
            assert((size_t)h.idx() < outgoing_hes_per_vertex_.size());
            outgoing_hes_per_vertex_.erase(outgoing_hes_per_vertex_.begin() + h.idx());
        }


        // 3)

        --n_vertices_;
        vertex_deleted_.erase(vertex_deleted_.begin() + h.idx());
983

984
        // 4)
985

986
        vertex_deleted(h);
987

988 989 990 991 992
        // Iterator to next element in vertex list
//        return (vertices_begin() + h.idx());
        return VertexIter(this, h);

    }
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
}

//========================================================================================

/**
 * \brief Delete edge from mesh
 *
 * After performing this operation, all edges
 * following edge _h in the array will be accessible
 * through their old handle decreased by one.
 * This function directly fixes the edge links
 * in all faces. These steps are performed:
 *
1006 1007 1008 1009 1010 1011 1012
 * 1) Delete bottom-up links from incident vertices
 * 2) Decrease all half-edge handles > _h in incident faces
 * 3) Delete entry in bottom-up list: HE -> HF
 * 4) Decrease all half-edge handles > 2*_h.idx() in
 *    vertex bottom-up list
 * 5) Delete edge itself
 * 6) Delete property entry
1013
 *
1014
 * @param _h An edge's handle
1015
 */
1016
EdgeIter TopologyKernel::delete_edge_core(const EdgeHandle& _h) {
1017

1018 1019 1020 1021 1022 1023
    EdgeHandle h = _h;

    assert(h.is_valid() && (size_t)h.idx() < edges_.size());

    if (fast_deletion_enabled() && !deferred_deletion_enabled()) // for fast deletion swap handle with last one
    {
Max Lyon's avatar
Max Lyon committed
1024
        EdgeHandle last_edge = EdgeHandle((int)edges_.size()-1);
1025
        assert(!edge_deleted_[last_edge.idx()]);
1026
        swap_edge_indices(h, last_edge);
1027 1028 1029
        h = last_edge;
    }

1030 1031 1032 1033

    // 1)
    if(v_bottom_up_) {

1034 1035
        VertexHandle v0 = edge(h).from_vertex();
        VertexHandle v1 = edge(h).to_vertex();
1036 1037
        assert(v0.is_valid() && (size_t)v0.idx() < outgoing_hes_per_vertex_.size());
        assert(v1.is_valid() && (size_t)v1.idx() < outgoing_hes_per_vertex_.size());
1038

1039 1040 1041
        outgoing_hes_per_vertex_[v0.idx()].erase(
                std::remove(outgoing_hes_per_vertex_[v0.idx()].begin(),
                            outgoing_hes_per_vertex_[v0.idx()].end(),
1042
                            halfedge_handle(h, 0)),
1043
                            outgoing_hes_per_vertex_[v0.idx()].end());
1044

1045 1046 1047
        outgoing_hes_per_vertex_[v1.idx()].erase(
                std::remove(outgoing_hes_per_vertex_[v1.idx()].begin(),
                            outgoing_hes_per_vertex_[v1.idx()].end(),
1048
                            halfedge_handle(h, 1)),
1049
                            outgoing_hes_per_vertex_[v1.idx()].end());
1050 1051
    }

1052 1053
    if (deferred_deletion_enabled())
    {
1054
        ++n_deleted_edges_;
1055 1056
        edge_deleted_[h.idx()] = true;
//        deleted_edges_.push_back(h);
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
        // Return iterator to next element in list
//        return (edges_begin() + h.idx()+1);
        return EdgeIter(this, EdgeHandle(h.idx()+1));
    }
    else
    {

        if (!fast_deletion_enabled())
        {
            // 2)
            if(e_bottom_up_) {

                assert((size_t)halfedge_handle(h, 0).idx() < incident_hfs_per_he_.size());

                // Decrease all half-edge handles > he and
                // delete all half-edge handles == he in face definitions
                // Get all faces that need updates
                std::set<FaceHandle> update_faces;
                for(std::vector<std::vector<HalfFaceHandle> >::const_iterator iit =
                    (incident_hfs_per_he_.begin() + halfedge_handle(h, 0).idx()),
                    iit_end = incident_hfs_per_he_.end(); iit != iit_end; ++iit) {
                    for(std::vector<HalfFaceHandle>::const_iterator it = iit->begin(),
                        end = iit->end(); it != end; ++it) {
                        update_faces.insert(face_handle(*it));
                    }
                }
                // Update respective handles
                HEHandleCorrection cor(halfedge_handle(h, 1));
                for(std::set<FaceHandle>::iterator f_it = update_faces.begin(),
                    f_end = update_faces.end(); f_it != f_end; ++f_it) {
1088

1089
                    std::vector<HalfEdgeHandle> hes = face(*f_it).halfedges();
1090

1091 1092 1093
                    // Delete current half-edge from face's half-edge list
                    hes.erase(std::remove(hes.begin(), hes.end(), halfedge_handle(h, 0)), hes.end());
                    hes.erase(std::remove(hes.begin(), hes.end(), halfedge_handle(h, 1)), hes.end());
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
    #if defined(__clang_major__) && (__clang_major__ >= 5)
                    for(std::vector<HalfEdgeHandle>::iterator it = hes.begin(), end = hes.end();
                        it != end; ++it) {
                        cor.correctValue(*it);
                    }
    #else
                    std::for_each(hes.begin(), hes.end(),
                                  fun::bind(&HEHandleCorrection::correctValue, &cor, fun::placeholders::_1));
    #endif
                    face(*f_it).set_halfedges(hes);
                }
            } else {

                // Iterate over all faces
                for(FaceIter f_it = faces_begin(), f_end = faces_end();
                    f_it != f_end; ++f_it) {

                    // Get face's half-edges
                    std::vector<HalfEdgeHandle> hes = face(*f_it).halfedges();

                    // Delete current half-edge from face's half-edge list
                    hes.erase(std::remove(hes.begin(), hes.end(), halfedge_handle(h, 0)), hes.end());
                    hes.erase(std::remove(hes.begin(), hes.end(), halfedge_handle(h, 1)), hes.end());

                    // Decrease all half-edge handles greater than _h in face
                    HEHandleCorrection cor(halfedge_handle(h, 1));
    #if defined(__clang_major__) && (__clang_major__ >= 5)
                    for(std::vector<HalfEdgeHandle>::iterator it = hes.begin(), end = hes.end();
                        it != end; ++it) {
                        cor.correctValue(*it);
                    }
    #else
                    std::for_each(hes.begin(), hes.end(),
                                  fun::bind(&HEHandleCorrection::correctValue, &cor, fun::placeholders::_1));
    #endif
                    face(*f_it).set_halfedges(hes);
                }
1132
            }
1133 1134
        }

1135
        // 3)
1136

1137 1138
        if(e_bottom_up_) {
            assert((size_t)halfedge_handle(h, 1).idx() < incident_hfs_per_he_.size());
1139

1140 1141 1142
            incident_hfs_per_he_.erase(incident_hfs_per_he_.begin() + halfedge_handle(h, 1).idx());
            incident_hfs_per_he_.erase(incident_hfs_per_he_.begin() + halfedge_handle(h, 0).idx());
        }
1143

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
        if (!fast_deletion_enabled())
        {
            // 4)
            if(v_bottom_up_) {
                HEHandleCorrection cor(halfedge_handle(h, 1));
    #if defined(__clang_major__) && (__clang_major__ >= 5)
                for(std::vector<std::vector<HalfEdgeHandle> >::iterator it = outgoing_hes_per_vertex_.begin(),
                    end = outgoing_hes_per_vertex_.end(); it != end; ++it) {
                    cor.correctVecValue(*it);
                }
    #else
                std::for_each(outgoing_hes_per_vertex_.begin(),
                              outgoing_hes_per_vertex_.end(),
                              fun::bind(&HEHandleCorrection::correctVecValue, &cor, fun::placeholders::_1));
    #endif
1159
            }
1160 1161
        }

1162

1163 1164 1165
        // 5)
        edges_.erase(edges_.begin() + h.idx());
        edge_deleted_.erase(edge_deleted_.begin() + h.idx());
1166 1167


1168 1169 1170
        // 6)

        edge_deleted(h);
1171

1172 1173 1174
        // Return iterator to next element in list
//        return (edges_begin() + h.idx());
        return EdgeIter(this, h);
1175

1176
    }
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
}

//========================================================================================

/**
 * \brief Delete face from mesh
 *
 * After performing this operation, all faces
 * following face _h in the array will be accessible
 * through their old handle decreased by one.
 * This function directly fixes the face links
 * in all cells. These steps are performed:
 *
1190 1191 1192 1193 1194 1195 1196
 * 1) Delete bottom-up links from incident edges
 * 2) Decrease all half-face handles > _h in incident cells
 * 3) Delete entry in bottom-up list: HF -> C
 * 4) Decrease all half-face handles > 2*_h.idx() in
 *    half-edge bottom-up list
 * 5) Delete face itself
 * 6) Delete property entry
1197
 *
1198
 * @param _h An face's handle
1199
 */
1200
FaceIter TopologyKernel::delete_face_core(const FaceHandle& _h) {
1201

1202 1203 1204 1205 1206 1207 1208
    FaceHandle h = _h;

    assert(h.is_valid() && (size_t)h.idx() < faces_.size());


    if (fast_deletion_enabled() && !deferred_deletion_enabled()) // for fast deletion swap handle with last one
    {
Max Lyon's avatar
Max Lyon committed
1209
        FaceHandle last_face = FaceHandle((int)faces_.size()-1);
1210
        assert(!face_deleted_[last_face.idx()]);
1211
        swap_face_indices(h, last_face);
1212 1213
        h = last_face;
    }
1214 1215 1216 1217

    // 1)
    if(e_bottom_up_) {

1218
        const std::vector<HalfEdgeHandle>& hes = face(h).halfedges();
1219 1220 1221
        for(std::vector<HalfEdgeHandle>::const_iterator he_it = hes.begin(),
                he_end = hes.end(); he_it != he_end; ++he_it) {

1222
            assert((size_t)std::max(he_it->idx(), opposite_halfedge_handle(*he_it).idx()) < incident_hfs_per_he_.size());
1223

1224 1225 1226
            incident_hfs_per_he_[he_it->idx()].erase(
                    std::remove(incident_hfs_per_he_[he_it->idx()].begin(),
                                incident_hfs_per_he_[he_it->idx()].end(),
1227
                                halfface_handle(h, 0)), incident_hfs_per_he_[he_it->idx()].end());