TetrahedralMeshTopologyKernel.cc 25 KB
Newer Older
Max Lyon's avatar
Max Lyon committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
/*===========================================================================*\
 *                                                                           *
 *                            OpenVolumeMesh                                 *
 *        Copyright (C) 2011 by Computer Graphics Group, RWTH Aachen         *
 *                        www.openvolumemesh.org                             *
 *                                                                           *
 *---------------------------------------------------------------------------*
 *  This file is part of OpenVolumeMesh.                                     *
 *                                                                           *
 *  OpenVolumeMesh is free software: you can redistribute it and/or modify   *
 *  it under the terms of the GNU Lesser General Public License as           *
 *  published by the Free Software Foundation, either version 3 of           *
 *  the License, or (at your option) any later version with the              *
 *  following exceptions:                                                    *
 *                                                                           *
 *  If other files instantiate templates or use macros                       *
 *  or inline functions from this file, or you compile this file and         *
 *  link it with other files to produce an executable, this file does        *
 *  not by itself cause the resulting executable to be covered by the        *
 *  GNU Lesser General Public License. This exception does not however       *
 *  invalidate any other reasons why the executable file might be            *
 *  covered by the GNU Lesser General Public License.                        *
 *                                                                           *
 *  OpenVolumeMesh is distributed in the hope that it will be useful,        *
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of           *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            *
 *  GNU Lesser General Public License for more details.                      *
 *                                                                           *
 *  You should have received a copy of the GNU LesserGeneral Public          *
 *  License along with OpenVolumeMesh.  If not,                              *
 *  see <http://www.gnu.org/licenses/>.                                      *
 *                                                                           *
\*===========================================================================*/

/*===========================================================================*\
 *                                                                           *
 *   $Revision$                                                         *
 *   $Date$                    *
 *   $LastChangedBy$                                                *
 *                                                                           *
\*===========================================================================*/

#include "TetrahedralMeshTopologyKernel.hh"

#include <iostream>

namespace OpenVolumeMesh {


TetrahedralMeshTopologyKernel::TetrahedralMeshTopologyKernel() {

}

//========================================================================================


TetrahedralMeshTopologyKernel::~TetrahedralMeshTopologyKernel() {

}

//========================================================================================


FaceHandle TetrahedralMeshTopologyKernel::add_face(const std::vector<HalfEdgeHandle>& _halfedges, bool _topologyCheck) {

    if(_halfedges.size() != 3) {
#ifndef NDEBUG
        std::cerr << "TetrahedralMeshTopologyKernel::add_face(): Face valence is not three! Returning" << std::endl;
        std::cerr << "invalid handle." << std::endl;
#endif
        return TopologyKernel::InvalidFaceHandle;
    }

    return TopologyKernel::add_face(_halfedges, _topologyCheck);
}

//========================================================================================


FaceHandle
TetrahedralMeshTopologyKernel::add_face(const std::vector<VertexHandle>& _vertices) {

    if(_vertices.size() != 3) {
#ifndef NDEBUG
        std::cerr << "TetrahedralMeshTopologyKernel::add_face(): Face valence is not three! Returning" << std::endl;
        std::cerr << "invalid handle." << std::endl;
#endif
        return TopologyKernel::InvalidFaceHandle;
    }

    return TopologyKernel::add_face(_vertices);
}

//========================================================================================


CellHandle
TetrahedralMeshTopologyKernel::add_cell(const std::vector<HalfFaceHandle>& _halffaces, bool _topologyCheck) {

    if(_halffaces.size() != 4) {
// To make this consistent with add_face
#ifndef NDEBUG
        std::cerr << "Cell valence is not four! Aborting." << std::endl;
#endif
        return TopologyKernel::InvalidCellHandle;
    }
    for(std::vector<HalfFaceHandle>::const_iterator it = _halffaces.begin();
            it != _halffaces.end(); ++it) {
        if(TopologyKernel::halfface(*it).halfedges().size() != 3) {
#ifndef NDEBUG
            std::cerr << "Incident face does not have valence three! Aborting." << std::endl;
#endif
            return TopologyKernel::InvalidCellHandle;
        }
    }

    return TopologyKernel::add_cell(_halffaces, _topologyCheck);
}


HalfEdgeHandle TetrahedralMeshTopologyKernel::add_halfedge(const VertexHandle& _fromVertex, const VertexHandle& _toVertex)
{
    HalfEdgeHandle he = halfedge(_fromVertex, _toVertex);
    if (he != InvalidHalfEdgeHandle)
        return he;
    else
        return halfedge_handle(add_edge(_fromVertex, _toVertex), 0);
}

HalfFaceHandle TetrahedralMeshTopologyKernel::add_halfface(const std::vector<HalfEdgeHandle>& _halfedges, bool _topologyCheck)
{
    HalfFaceHandle hf = halfface(_halfedges);
    if (hf != InvalidHalfFaceHandle)
        return hf;
    else
        return halfface_handle(add_face(_halfedges, _topologyCheck), 0);
}

HalfFaceHandle TetrahedralMeshTopologyKernel::add_halfface(VertexHandle _vh0, VertexHandle _vh1, VertexHandle _vh2, bool _topologyCheck)
{
    std::vector<HalfEdgeHandle> halfedges;
    halfedges.push_back(add_halfedge(_vh0, _vh1));
    halfedges.push_back(add_halfedge(_vh1, _vh2));
    halfedges.push_back(add_halfedge(_vh2, _vh0));
    return add_halfface(halfedges, _topologyCheck);
}

/*void TetrahedralMeshTopologyKernel::replaceHalfFace(CellHandle ch, HalfFaceHandle hf_del, HalfFaceHandle hf_ins)
{
    Cell& c = cells_[ch.idx()];
    std::vector<HalfFaceHandle> hfs;
    for (unsigned int i = 0; i < c.halffaces().size(); ++i)
        if (c.halffaces()[i] != hf_del)
            hfs.push_back(c.halffaces()[i]);
        else
            hfs.push_back(hf_ins);
    c.set_halffaces(hfs);
}

void TetrahedralMeshTopologyKernel::replaceHalfEdge(HalfFaceHandle hfh, HalfEdgeHandle he_del, HalfEdgeHandle he_ins)
{
    FaceHandle fh = face_handle(hfh);
    unsigned char oppF = hfh.idx() - halfface_handle(fh, 0);
    if (oppF == 1)
    {
        he_del = opposite_halfedge_handle(he_del);
        he_ins = opposite_halfedge_handle(he_ins);
    }
    Face& f = faces_[fh.idx()];
    std::vector<HalfEdgeHandle> hes;
    for (unsigned int i = 0; i < f.halfedges().size(); ++i)
        if (f.halfedges()[i] != he_del)
            hes.push_back(f.halfedges()[i]);
        else
            hes.push_back(he_ins);
    f.set_halfedges(hes);

}*/

/*
void TetrahedralMeshTopologyKernel::collapse_edge(HalfEdgeHandle _heh)
{

    std::vector<bool> deleteTagFaces(faces_.size(), false);
    std::vector<bool> deleteTagEdges(edges_.size(), false);
    std::vector<bool> deleteTagCells(cells_.size(), false);

    for (HalfEdgeHalfFaceIter hehf_it = hehf_iter(_heh); hehf_it.valid(); ++hehf_it)
    {
        CellHandle ch = incident_cell(*hehf_it);
        if (ch.is_valid())
        {
            HalfFaceHandle hf134 = *hehf_it;
            HalfFaceHandle hf143 = opposite_halfface_handle(hf143);
            HalfEdgeHandle he13  = prev_halfedge_in_halfface(_heh, hf134);
            HalfEdgeHandle he41  = next_halfedge_in_halfface(_heh, hf134);
            HalfFaceHandle hf123 = adjacent_halfface_in_cell(hf134, he13);
            HalfFaceHandle hf142 = adjacent_halfface_in_cell(hf134, he41);
            HalfFaceHandle hf132 = opposite_halfface_handle(hf123);
            CellHandle ch0123 = incident_cell(hf132);
            HalfEdgeHandle he32  = next_halfedge_in_halfface(he13, hf132);
            HalfEdgeHandle he23  = opposite_halfedge_handle(he32);
            HalfEdgeHandle he14  = opposite_halfedge_handle(he41);
            HalfEdgeHandle he31  = opposite_halfedge_handle(he13);
            HalfEdgeHandle he42  = next_halfedge_in_halfface(he14, hf142);
            HalfEdgeHandle he24  = opposite_halfedge_handle(he42);
            HalfFaceHandle hf243 = adjacent_halfface_in_cell(hf134, he41);
            HalfFaceHandle hf234 = opposite_halfface_handle(hf234);
            HalfEdgeHandle he12  = next_halfedge_in_halfface(he42, hf142);
            HalfEdgeHandle he21  = opposite_halfedge_handle(he12);

            if (ch0123.is_valid())
            {
                HalfFaceHandle hf031 = adjacent_halfface_in_cell(hf132, he13);
                HalfFaceHandle hf023 = adjacent_halfface_in_cell(hf132, he32);

                replaceHalfEdge(hf031, he31, he41);
                replaceHalfEdge(hf023, he23, he24);
                replaceHalfFace(ch0123, hf132, hf142);
            }

            //copyHalfFaceAndHalfEdgeProperties(hf132, 142);

            incident_cell_per_hf_[hf142.idx()] = ch0123;


            deleteTagCells[ch.idx()] = true;
            deleteTagFaces[face_handle(hf132).idx()] = true;
            deleteTagFaces[face_handle(*hehf_it).idx()] = true;
            deleteTagEdges[edge_handle(he13).idx()] = true;
            deleteTagEdges[edge_handle(he32).idx()] = true;

            std::set<HalfFaceHandle> excludeFaces;
            excludeFaces.insert(hf134);
            excludeFaces.insert(hf143);
            excludeFaces.insert(hf123);
            excludeFaces.insert(hf132);
            excludeFaces.insert(hf243);
            excludeFaces.insert(hf234);

            std::vector<std::pair<HalfEdgeHandle, HalfEdgeHandle> > joinpartners;
            joinpartners.push_back(std::make_pair(he41, he31));
            joinpartners.push_back(std::make_pair(he14, he13));
            joinpartners.push_back(std::make_pair(he42, he32));
            joinpartners.push_back(std::make_pair(he24, he23));

            for (unsigned int i = 0; i < joinpartners.size(); ++i)
            {
                HalfEdgeHandle target = joinpartners[i].first;
                HalfEdgeHandle source = joinpartners[i].second;
                std::vector<HalfFaceHandle> incidentHfs;
                for (unsigned int j = 0; j < incident_hfs_per_he_[target.idx()].size(); ++j)
                {
                    HalfFaceHandle cur_hf = incident_hfs_per_he_[target.idx()][j];
                    if ((excludeFaces.find(cur_hf) == excludeFaces.end()) && !deleteTagFaces[face_handle(cur_hf).idx()])
                        incidentHfs.push_back(cur_hf);
                }
                for (unsigned int i = 0; i < incident_hfs_per_he_[source.idx()].size(); ++i)
                {
                    HalfFaceHandle cur_hf = incident_hfs_per_he_[source.idx()][i];
                    if ((excludeFaces.find(cur_hf) == excludeFaces.end()) && !deleteTagFaces[face_handle(cur_hf).idx()])
                        incidentHfs.push_back(cur_hf);
                }

                std::swap(incident_hfs_per_he_[target], incidentHfs);
            }

            std::vector<HalfFaceHandle>& vec = incident_hfs_per_he_[he21];
            vec.erase(std::remove(vec.begin(), vec.end(), hf132), vec.end());
            std::vector<HalfFaceHandle>& vec2 = incident_hfs_per_he_[he12];
            vec2.erase(std::remove(vec2.begin(), vec2.end(), hf123), vec2.end());

        }
        else
        {
            deleteTagFaces[face_handle(*hehf_it).idx()] = true;
        }
    }


    VertexHandle from_vh = halfedge(_heh).from_vertex();
    VertexHandle to_vh = halfedge(_heh).to_vertex();
    for (VertexOHalfEdgeIter voh_it = voh_iter(from_vh); voh_it.valid(); ++voh_it )
    {
        Edge he = halfedge(*voh_it);
        if (he.to_vertex() == to_vh)
        {
            std::vector<HalfEdgeHandle>& vec = outgoing_hes_per_vertex_[to_vh];
            vec.erase(std::remove(vec.begin(), vec.end(), opposite_halfedge_handle(*voh_it)), vec.end());
        }
        EdgeHandle eh = edge_handle(*voh_it);
        if (!deleteTagEdges[eh.idx()])
        {
            std::vector<HalfEdgeHandle>& vec = outgoing_hes_per_vertex_[to_vh];
            vec.push_back(opposite_halfedge_handle(*voh_it));

            Edge& e = edges_[eh.idx()];
            if (e.from_vertex() == from_vh)
                e.set_from_vertex(to_vh);
            if (e.to_vertex() == from_vh)
                e.set_to_vertex(to_vh);

        }
    }

    outgoing_hes_per_vertex_[from_vh].clear();

    deleteTagEdges[edge_handle(_heh).idx()] = true;

    delete_multiple_cells(deleteTagCells);
    delete_multiple_faces(deleteTagFaces);
    delete_multiple_edges(deleteTagEdges);
    delete_vertex(from_vh);
}
*/


//void TetrahedralMeshTopologyKernel::swapCellProperties(CellHandle source, CellHandle destination)
//{
//    swapPropertyElements(cell_props_begin(), cell_props_end(), source, destination);
//}

//void TetrahedralMeshTopologyKernel::swapHalfFaceProperties(HalfFaceHandle source, HalfFaceHandle destination)
//{
//    swapPropertyElements(halfface_props_begin(), halfface_props_end(), source, destination);
//}

//void TetrahedralMeshTopologyKernel::swapHalfEdgeProperties(HalfEdgeHandle source, HalfEdgeHandle destination)
//{
//    swapPropertyElements(halfedge_props_begin(), halfedge_props_end(), source, destination);
//}

333
// cppcheck-suppress unusedFunction ; public interface
Max Lyon's avatar
Max Lyon committed
334 335 336 337 338 339 340 341 342 343
VertexHandle TetrahedralMeshTopologyKernel::collapse_edge(HalfEdgeHandle _heh)
{
    bool deferred_deletion_tmp = deferred_deletion_enabled();

    if (!deferred_deletion_tmp)
        enable_deferred_deletion(true);

    VertexHandle from_vh = halfedge(_heh).from_vertex();
    VertexHandle to_vh   = halfedge(_heh).to_vertex();

344 345

    // find cells that will collapse, i.e. are incident to the collapsing halfedge
Max Lyon's avatar
Max Lyon committed
346 347 348 349 350
    std::set<CellHandle> collapsingCells;
    for (HalfEdgeHalfFaceIter hehf_it = hehf_iter(_heh); hehf_it.valid(); ++hehf_it)
    {
        HalfFaceHandle hfh = *hehf_it;
        CellHandle ch = incident_cell(hfh);
351 352
        if (ch.is_valid())
            collapsingCells.insert(ch);
Max Lyon's avatar
Max Lyon committed
353 354
    }

355
    std::vector<CellHandle> incidentCells;
Max Lyon's avatar
Max Lyon committed
356
    for (VertexCellIter vc_it = vc_iter(from_vh); vc_it.valid(); ++vc_it)
357 358
        incidentCells.push_back(*vc_it);

Martin Heistermann's avatar
Martin Heistermann committed
359
    for (const CellHandle &ch: incidentCells)
Max Lyon's avatar
Max Lyon committed
360
    {
361
        if (collapsingCells.find(ch) != collapsingCells.end())
Max Lyon's avatar
Max Lyon committed
362 363
            continue;

364
        Cell c = cell(ch);
Max Lyon's avatar
Max Lyon committed
365 366 367

        std::vector<HalfFaceHandle> newHalffaces;

Martin Heistermann's avatar
Martin Heistermann committed
368
        for (unsigned int hf_idx = 0; hf_idx < 4; ++hf_idx)
Max Lyon's avatar
Max Lyon committed
369
        {
Martin Heistermann's avatar
Martin Heistermann committed
370
            Face hf = halfface(c.halffaces()[hf_idx]);
Max Lyon's avatar
Max Lyon committed
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
            std::vector<HalfEdgeHandle> newHalfedges;

            for (unsigned int j = 0; j < 3; ++j)
            {
                Edge e = halfedge(hf.halfedges()[j]);
                VertexHandle newStart = (e.from_vertex() == from_vh) ? to_vh: e.from_vertex();
                VertexHandle newEnd   = (e.to_vertex()   == from_vh) ? to_vh : e.to_vertex();

                HalfEdgeHandle heh = add_halfedge(newStart, newEnd);
                newHalfedges.push_back(heh);
                swap_halfedge_properties(hf.halfedges()[j], heh);
            }

            HalfFaceHandle hfh = add_halfface(newHalfedges);
            newHalffaces.push_back(hfh);
Martin Heistermann's avatar
Martin Heistermann committed
386
            swap_halfface_properties(c.halffaces()[hf_idx], hfh);
Max Lyon's avatar
Max Lyon committed
387 388
        }

389
        delete_cell(ch);
Max Lyon's avatar
Max Lyon committed
390 391 392

        CellHandle newCell = add_cell(newHalffaces);

393
        swap_cell_properties(ch, newCell);
Max Lyon's avatar
Max Lyon committed
394 395 396

    }

397

Max Lyon's avatar
Max Lyon committed
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
    VertexHandle survivingVertex = to_vh;

    if (!deferred_deletion_tmp)
    {
        if (fast_deletion_enabled())
        {
            // from_vh is swapped with last vertex and then deleted
            if (to_vh.idx() == (int)n_vertices() - 1)
                survivingVertex = from_vh;
        }
        else
        {
            // from_vh is deleted and every vertex id larger than from_vh is reduced by one
            if (from_vh.idx() < to_vh.idx())
                survivingVertex = VertexHandle(to_vh.idx() - 1);
        }
    }

    delete_vertex(from_vh);

    enable_deferred_deletion(deferred_deletion_tmp);

    return survivingVertex;

}

424
// cppcheck-suppress unusedFunction ; public interface
Max Lyon's avatar
Max Lyon committed
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
void TetrahedralMeshTopologyKernel::split_edge(HalfEdgeHandle _heh, VertexHandle _vh)
{
    bool deferred_deletion_tmp = deferred_deletion_enabled();

    if (!deferred_deletion_tmp)
        enable_deferred_deletion(true);

    for (HalfEdgeHalfFaceIter hehf_it = hehf_iter(_heh); hehf_it.valid(); ++hehf_it)
    {
        CellHandle ch = incident_cell(*hehf_it);
        if (ch.is_valid())
        {
            std::vector<VertexHandle> vertices = get_cell_vertices(*hehf_it, _heh);

            delete_cell(ch);

            add_cell(vertices[0], _vh, vertices[2], vertices[3]);
            add_cell(_vh, vertices[1], vertices[2], vertices[3]);
        }

    }

    delete_edge(edge_handle(_heh));

    enable_deferred_deletion(deferred_deletion_tmp);

}

453
// cppcheck-suppress unusedFunction ; public interface
Max Lyon's avatar
Max Lyon committed
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
void TetrahedralMeshTopologyKernel::split_face(FaceHandle _fh, VertexHandle _vh)
{
    bool deferred_deletion_tmp = deferred_deletion_enabled();

    if (!deferred_deletion_tmp)
        enable_deferred_deletion(true);

    for (unsigned int i = 0; i < 2; ++i)
    {
        HalfFaceHandle hfh = halfface_handle(_fh, i);
        CellHandle ch = incident_cell(hfh);
        if (ch.is_valid())
        {
            std::vector<VertexHandle> vertices = get_cell_vertices(hfh);

            delete_cell(ch);

            add_cell(vertices[0], vertices[1], _vh, vertices[3]);
            add_cell(vertices[0], _vh, vertices[2], vertices[3]);
            add_cell(_vh, vertices[1], vertices[2], vertices[3]);
        }
    }

    delete_face(_fh);

    enable_deferred_deletion(deferred_deletion_tmp);

}


std::vector<VertexHandle> TetrahedralMeshTopologyKernel::get_cell_vertices(CellHandle ch) const
{
    return get_cell_vertices(cell(ch).halffaces().front());
}

std::vector<VertexHandle> TetrahedralMeshTopologyKernel::get_cell_vertices(CellHandle ch, VertexHandle vh) const
{
    HalfFaceHandle hfh = cell(ch).halffaces()[0];
    Face f = halfface(hfh);
    HalfEdgeHandle heh;
    for (unsigned int i = 0; i < 3; ++i)
    {
        Edge e = halfedge(f.halfedges()[i]);
        if (e.from_vertex() == vh)
        {
            heh = f.halfedges()[i];
            break;
        }
    }
    if (!heh.is_valid())
    {
        hfh = adjacent_halfface_in_cell(hfh, f.halfedges()[0]);
        heh = prev_halfedge_in_halfface(opposite_halfedge_handle(f.halfedges()[0]), hfh);
    }

    return get_cell_vertices(hfh,heh);

}

std::vector<VertexHandle> TetrahedralMeshTopologyKernel::get_cell_vertices(HalfFaceHandle hfh) const
{
    return get_cell_vertices(hfh, halfface(hfh).halfedges().front());
}

std::vector<VertexHandle> TetrahedralMeshTopologyKernel::get_cell_vertices(HalfFaceHandle hfh, HalfEdgeHandle heh) const
{
    std::vector<VertexHandle> vertices;

    // add vertices of halfface
    for (unsigned int i = 0; i < 3; ++i)
    {
        Edge e = halfedge(heh);
        vertices.push_back(e.from_vertex());
        heh = next_halfedge_in_halfface(heh, hfh);
    }

    Cell c = cell(incident_cell(hfh));
    HalfFaceHandle otherHfh = c.halffaces()[0];
    if (otherHfh == hfh)
        otherHfh = c.halffaces()[1];

    Face otherF = halfface(otherHfh);

    for (unsigned int i = 0; i < otherF.halfedges().size(); ++i)
    {
        HalfEdgeHandle he = otherF.halfedges()[i];
        Edge e = halfedge(he);
        if (std::find(vertices.begin(), vertices.end(), e.to_vertex()) == vertices.end())
        {
            vertices.push_back(e.to_vertex());
            return vertices;
        }
    }

    return vertices;
}

std::vector<VertexHandle> TetrahedralMeshTopologyKernel::get_halfface_vertices(HalfFaceHandle hfh) const
{
    return get_halfface_vertices(hfh, halfface(hfh).halfedges().front());
}

std::vector<VertexHandle> TetrahedralMeshTopologyKernel::get_halfface_vertices(HalfFaceHandle hfh, VertexHandle vh) const
{
    Face hf = halfface(hfh);
    for (unsigned int i = 0; i < 3; ++i)
        if (halfedge(hf.halfedges()[i]).from_vertex() == vh)
            return get_halfface_vertices(hfh, hf.halfedges()[i]);

    return std::vector<VertexHandle>();
}

566
// cppcheck-suppress unusedFunction ; public interface
Max Lyon's avatar
Max Lyon committed
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
std::vector<VertexHandle> TetrahedralMeshTopologyKernel::get_halfface_vertices(HalfFaceHandle hfh, HalfEdgeHandle heh) const
{
    std::vector<VertexHandle> vertices;

    // add vertices of halfface
    for (unsigned int i = 0; i < 3; ++i)
    {
        Edge e = halfedge(heh);
        vertices.push_back(e.from_vertex());
        heh = next_halfedge_in_halfface(heh, hfh);
    }

    return vertices;
}


//========================================================================================

CellHandle
TetrahedralMeshTopologyKernel::add_cell(const std::vector<VertexHandle>& _vertices, bool _topologyCheck) {

    // debug mode checks
    assert(TopologyKernel::has_full_bottom_up_incidences());
    assert(_vertices.size() == 4);

    // release mode checks
    if(!TopologyKernel::has_full_bottom_up_incidences()) {
        return CellHandle(-1);
    }

    if(_vertices.size() != 4) {
        return CellHandle(-1);
    }

    HalfFaceHandle hf0, hf1, hf2, hf3;

    std::vector<VertexHandle> vs;

    vs.push_back(_vertices[0]);
    vs.push_back(_vertices[1]);
    vs.push_back(_vertices[2]);
    hf0 = TopologyKernel::halfface(vs);
    if(!hf0.is_valid()) {
        FaceHandle fh = TopologyKernel::add_face(vs);
        hf0 = halfface_handle(fh, 0);
    }
    vs.clear();

    vs.push_back(_vertices[0]);
    vs.push_back(_vertices[2]);
    vs.push_back(_vertices[3]);
    hf1 = TopologyKernel::halfface(vs);
    if(!hf1.is_valid()) {
        FaceHandle fh = TopologyKernel::add_face(vs);
        hf1 = halfface_handle(fh, 0);
    }
    vs.clear();

    vs.push_back(_vertices[0]);
    vs.push_back(_vertices[3]);
    vs.push_back(_vertices[1]);
    hf2 = TopologyKernel::halfface(vs);
    if(!hf2.is_valid()) {
        FaceHandle fh = TopologyKernel::add_face(vs);
        hf2 = halfface_handle(fh, 0);
    }
    vs.clear();

    vs.push_back(_vertices[1]);
    vs.push_back(_vertices[3]);
    vs.push_back(_vertices[2]);
    hf3 = TopologyKernel::halfface(vs);
    if(!hf3.is_valid()) {
        FaceHandle fh = TopologyKernel::add_face(vs);
        hf3 = halfface_handle(fh, 0);
    }
    vs.clear();

    assert(hf0.is_valid());
    assert(hf1.is_valid());
    assert(hf2.is_valid());
    assert(hf3.is_valid());


    std::vector<HalfFaceHandle> hfs;
    hfs.push_back(hf0);
    hfs.push_back(hf1);
    hfs.push_back(hf2);
    hfs.push_back(hf3);

    if (_topologyCheck) {
        /*
        * Test if all halffaces are connected and form a two-manifold
        * => Cell is closed
        *
        * This test is simple: The number of involved half-edges has to be
        * exactly twice the number of involved edges.
        */

        std::set<HalfEdgeHandle> incidentHalfedges;
        std::set<EdgeHandle>     incidentEdges;

        for(std::vector<HalfFaceHandle>::const_iterator it = hfs.begin(),
                end = hfs.end(); it != end; ++it) {

            OpenVolumeMeshFace hface = halfface(*it);
            for(std::vector<HalfEdgeHandle>::const_iterator he_it = hface.halfedges().begin(),
                    he_end = hface.halfedges().end(); he_it != he_end; ++he_it) {
                incidentHalfedges.insert(*he_it);
                incidentEdges.insert(edge_handle(*he_it));
            }
        }

        if(incidentHalfedges.size() != (incidentEdges.size() * 2u)) {
#ifndef NDEBUG
            std::cerr << "The specified halffaces are not connected!" << std::endl;
#endif
            return InvalidCellHandle;
        }
        // The halffaces are now guaranteed to form a two-manifold

        if(has_face_bottom_up_incidences()) {

            for(std::vector<HalfFaceHandle>::const_iterator it = hfs.begin(),
                    end = hfs.end(); it != end; ++it) {
                if(incident_cell(*it) != InvalidCellHandle) {
#ifndef NDEBUG
                    std::cerr << "Warning: One of the specified half-faces is already incident to another cell!" << std::endl;
#endif
                    return InvalidCellHandle;
                }
            }

        }

    }

    return TopologyKernel::add_cell(hfs, false);
}

CellHandle TetrahedralMeshTopologyKernel::add_cell(VertexHandle _vh0, VertexHandle _vh1, VertexHandle _vh2, VertexHandle _vh3, bool _topologyCheck)
{
    std::vector<HalfFaceHandle> halffaces;
    halffaces.push_back(add_halfface(_vh0, _vh1, _vh2));
    halffaces.push_back(add_halfface(_vh0, _vh2, _vh3));
    halffaces.push_back(add_halfface(_vh0, _vh3, _vh1));
    halffaces.push_back(add_halfface(_vh1, _vh3, _vh2));
    return add_cell(halffaces, _topologyCheck);
}

//========================================================================================

} // Namespace OpenVolumeMesh