Welcome



Welcome to the Computer Graphics Group at RWTH Aachen University!

The research and teaching activities at our institute focus on geometry acquisition and processing, on interactive visualization, and on related areas such as computer vision, photo-realistic image synthesis, and ultra high speed multimedia data transmission.

In our projects we are cooperating with various industry companies as well as with academic research groups around the world. Results are published and presented at high-profile conferences and symposia. Additional funding sources, among others, are the Deutsche Forschungsgemeinschaft and the European Union.

We have a paper on Inter-Surface Maps at SIGGRAPH Asia 2019.

Aug. 26, 2019

We have a paper on Convolutional Decoding of Point Clouds at the Eurographics Symposium on Geometry Processing 2019.

June 27, 2019

We have a paper on Trimmed Quad Meshing at SIGGRAPH 2019.

April 19, 2019

RWTH Fellowship

Prof. Kobbelt has been named RWTH Fellow for his outstanding research performance and his great merits for RWTH Aachen University.

April 5, 2019

We have a paper on String-Based Synthesis of Structured Shapes at Eurographics 2019.

March 19, 2019

We have presented a paper on Correspondence Learning on Unstructured 3D Meshes at the ECCV 2018 Workshop GMDL.

Sept. 18, 2018

Recent Publications

Parametrization Quantization with Free Boundaries for Trimmed Quad Meshing

SIGGRAPH 2019

The generation of quad meshes based on surface parametrization techniques has proven to be a versatile approach. These techniques quantize an initial seamless parametrization so as to obtain an integer grid map implying a pure quad mesh. State-of-the-art methods following this approach have to assume that the surface to be meshed either has no boundary, or has a boundary which the resulting mesh is supposed to be aligned to. In a variety of applications this is not desirable and non-boundary-aligned meshes or grid-parametrizations are preferred. We thus present a technique to robustly generate integer grid maps which are either boundary-aligned, non-boundary-aligned, or partially boundary-aligned, just as required by different applications. We thereby generalize previous work to this broader setting. This enables the reliable generation of trimmed quad meshes with partial elements along the boundary, preferable in various scenarios, from tiled texturing over design and modeling to fabrication and architecture, due to fewer constraints and hence higher overall mesh quality and other benefits in terms of aesthetics and flexibility.

 

Distortion-Minimizing Injective Maps Between Surfaces

SIGGRAPH Asia 2019

The problem of discrete surface parametrization, i.e. mapping a mesh to a planar domain, has been investigated extensively. We address the more general problem of mapping between surfaces. In particular, we provide a formulation that yields a map between two disk-topology meshes, which is continuous and injective by construction and which locally minimizes intrinsic distortion. A common approach is to express such a map as the composition of two maps via a simple intermediate domain such as the plane, and to independently optimize the individual maps. However, even if both individual maps are of minimal distortion, there is potentially high distortion in the composed map. In contrast to many previous works, we minimize distortion in an end-to-end manner, directly optimizing the quality of the composed map. This setting poses additional challenges due to the discrete nature of both the source and the target domain. We propose a formulation that, despite the combinatorial aspects of the problem, allows for a purely continuous optimization. Further, our approach addresses the non-smooth nature of discrete distortion measures in this context which hinders straightforward application of off-the-shelf optimization techniques. We demonstrate that, despite the challenges inherent to the more involved setting, discrete surface-to-surface maps can be optimized effectively.

 

String-Based Synthesis of Structured Shapes

Computer Graphics Forum (Proc. EUROGRAPHICS 2019)

We propose a novel method to synthesize geometric models from a given class of context-aware structured shapes such as buildings and other man-made objects. Our central idea is to leverage powerful machine learning methods from the area of natural language processing for this task. To this end, we propose a technique that maps shapes to strings and vice versa, through an intermediate shape graph representation. We then convert procedurally generated shape repositories into text databases that in turn can be used to train a variational autoencoder which enables higher level shape manipulation and synthesis like, e.g., interpolation and sampling via its continuous latent space.

Disclaimer Home Visual Computing institute RWTH Aachen University