Welcome to the Computer Graphics Group at RWTH Aachen University!

The research and teaching activities at our institute focus on geometry acquisition and processing, on interactive visualization, and on related areas such as computer vision, photo-realistic image synthesis, and ultra high speed multimedia data transmission.

In our projects we are cooperating with various industry companies as well as with academic research groups around the world. Results are published and presented at high-profile conferences and symposia. Additional funding sources, among others, are the Deutsche Forschungsgemeinschaft and the European Union.

We have a paper on Convolutional Decoding of Point Clouds at the Eurographics Symposium on Geometry Processing 2019.

June 27, 2019

We have a paper on Trimmed Quad Meshing at SIGGRAPH 2019.

April 19, 2019

RWTH Fellowship

Prof. Kobbelt has been named RWTH Fellow for his outstanding research performance and his great merits for RWTH Aachen University.

April 5, 2019

We have a paper on String-Based Synthesis of Structured Shapes at Eurographics 2019.

March 19, 2019

We have presented a paper on Correspondence Learning on Unstructured 3D Meshes at the ECCV 2018 Workshop GMDL.

Sept. 18, 2018

We have a paper on Interactive Curve Constrained Functional Maps at the Eurographics Symposium on Geometry Processing 2018.

June 21, 2018

Recent Publications

Parametrization Quantization with Free Boundaries for Trimmed Quad Meshing


The generation of quad meshes based on surface parametrization techniques has proven to be a versatile approach. These techniques quantize an initial seamless parametrization so as to obtain an integer grid map implying a pure quad mesh. State-of-the-art methods following this approach have to assume that the surface to be meshed either has no boundary, or has a boundary which the resulting mesh is supposed to be aligned to. In a variety of applications this is not desirable and non-boundary-aligned meshes or grid-parametrizations are preferred. We thus present a technique to robustly generate integer grid maps which are either boundary-aligned, non-boundary-aligned, or partially boundary-aligned, just as required by different applications. We thereby generalize previous work to this broader setting. This enables the reliable generation of trimmed quad meshes with partial elements along the boundary, preferable in various scenarios, from tiled texturing over design and modeling to fabrication and architecture, due to fewer constraints and hence higher overall mesh quality and other benefits in terms of aesthetics and flexibility.


String-Based Synthesis of Structured Shapes

Computer Graphics Forum (Proc. EUROGRAPHICS 2019)

We propose a novel method to synthesize geometric models from a given class of context-aware structured shapes such as buildings and other man-made objects. Our central idea is to leverage powerful machine learning methods from the area of natural language processing for this task. To this end, we propose a technique that maps shapes to strings and vice versa, through an intermediate shape graph representation. We then convert procedurally generated shape repositories into text databases that in turn can be used to train a variational autoencoder which enables higher level shape manipulation and synthesis like, e.g., interpolation and sampling via its continuous latent space.


A Convolutional Decoder for Point Clouds using Adaptive Instance Normalization

Eurographics Symposium on Geometry Processing 2019

Automatic synthesis of high quality 3D shapes is an ongoing and challenging area of research. While several data-driven methods have been proposed that make use of neural networks to generate 3D shapes, none of them reach the level of quality that deep learning synthesis approaches for images provide. In this work we present a method for a convolutional point cloud decoder/generator that makes use of recent advances in the domain of image synthesis. Namely, we use Adaptive Instance Normalization and offer an intuition on why it can improve training. Furthermore, we propose extensions to the minimization of the commonly used Chamfer distance for auto-encoding point clouds. In addition, we show that careful sampling is important both for the input geometry and in our point cloud generation process to improve results. The results are evaluated in an auto-encoding setup to offer both qualitative and quantitative analysis. The proposed decoder is validated by an extensive ablation study and is able to outperform current state of the art results in a number of experiments. We show the applicability of our method in the fields of point cloud upsampling, single view reconstruction, and shape synthesis.

Disclaimer Home Visual Computing institute RWTH Aachen University