Welcome



Welcome to the Computer Graphics Group at RWTH Aachen University!

The research and teaching activities at our institute focus on geometry acquisition and processing, on interactive visualization, and on related areas such as computer vision, photo-realistic image synthesis, and ultra high speed multimedia data transmission.

In our projects we are cooperating with various industry companies as well as with academic research groups around the world. Results are published and presented at high-profile conferences and symposia. Additional funding sources, among others, are the Deutsche Forschungsgemeinschaft and the European Union.

News

OPEN FACULTY POSITION ON VISUAL COMPUTING

Researchers with a substantial track record are invited to submit their application by May 31st 2015. More details can be found in the official announcement. If you have further questions, please contact Prof. Dr. Leif Kobbelt directly.

May 31, 2015

Our paper on Quad Layout Embedding will be presented at Eurographics 2015

May 5, 2015

The VMV 2015 website is online.

Jan. 13, 2015

We have two papers on Quad Meshes and Quad Layouts at SIGGRAPH Asia 2014.

Sept. 15, 2014

gamescom 2014

Our group will be presenting at the "gamescom" fair in Cologne again this year from 8/13/2014 till 8/17/2014. We will give an insight into our activities and inform about possibilities of studying graphics-centered computer science at RWTH Aachen University and how this will prepare (not only) for work in the games industry. Of course, we will also have something to play at our booth. More information

July 24, 2014

We have a paper on Mobile Localization at ECCV 2014.

July 7, 2014

Recent Publications

Reduced-Order Shape Optimization Using Offset Surfaces

ACM Transactions on Graphics (TOG), 34(4), 2015
Proceedings of the 2015 SIGGRAPH Conference

Given the 2-manifold surface of a 3d object, we propose a novel method for the computation of an offset surface with varying thickness such that the solid volume between the surface an its offset satisfies a set of prescribed constraints and at the same time minimizes a given objective functional. Since the constraints as well as the objective functional can easily be adjusted to specific application requirements, our method provides a flexible and powerful tool for shape optimization. We use manifold harmonics to derive a reduced-order formulation of the optimization problem which guarantees a smooth offset surface and speeds up the computation independently from the input mesh resolution without affecting the quality of the result. The constrained optimization problem can be solved in a numerically robust manner with commodity solvers. Furthermore, the method allows to simultaneously optimize an inner and an outer offset in order to increase the degrees of freedom. We demonstrate our method in a number of examples where we control the physical mass properties of rigid objects for the purpose of 3d printing.

 

Dual Strip Weaving: Interactive Design of Quad Layouts using Elastica Strips

SIGGRAPH Asia 2014

We introduce Dual Strip Weaving, a novel concept for the interactive design of quad layouts, i.e. partitionings of freeform surfaces into quadrilateral patch networks. In contrast to established tools for the design of quad layouts or subdivision base meshes, which are often based on creating individual vertices, edges, and quads, our method takes a more global perspective, operating on a higher level of abstraction: the atomic operation of our method is the creation of an entire cyclic strip, delineating a large number of quad patches at once. The global consistency-preserving nature of this approach reduces demands on the user’s expertise by requiring less advance planning. Efficiency is achieved using a novel method at the heart of our system, which automatically proposes geometrically and topologically suitable strips to the user. Based on this we provide interaction tools to influence the design process to any desired degree and visual guides to support the user in this task.

 

Level-of-Detail Quad Meshing

SIGGRAPH Asia 2014

The most effective and popular tools for obtaining feature aligned quad meshes from triangular input meshes are based on cross field guided parametrization. These methods are incarnations of a conceptual three-step pipeline: (1) cross field computation, (2) field-guided surface parametrization, (3) quad mesh extraction. While in most meshing scenarios the user prescribes a desired target quad size or edge length, this information is typically taken into account from step 2 onwards only, but not in the cross field computation step. This turns into a problem in the presence of small scale geometric or topological features or noise in the input mesh: closely placed singularities are induced in the cross field, which are not properly reproducible by vertices in a quad mesh with the prescribed edge length, causing severe distortions or even failure of the meshing algorithm. We reformulate the construction of cross fields as well as field-guided parametrizations in a scale-aware manner which effectively suppresses densely spaced features and noise of geometric as well as topological kind. Dominant large-scale features are adequately preserved in the output by relying on the unaltered input mesh as the computational domain.

Disclaimer Home Visual Computing institute RWTH Aachen University